Bacillus cereus KG5’ İN PROTEAZ ENZİMİ ÜZERİNE ÇALIŞMALAR

Nazenin AHMETOĞLU

YÜKSEK LİSANS TEZİ

BİYOLOJİ ANABİLİM DALI

DİYARBAKIR

Haziran 2011
T.C. DİCLE ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ
DİYARBAKIR

Nazemin AHMETÖĞLU tarafından yapılan "Bacillus cereus KG5' in Proteaz Enzimi Üzerine Çalışmaları" konulu bu çalışma, jüriimiz tarafından Biyoloji Anabilim Dalında YÜKSEK LİSANS tezi olarak kabul edilmiştir.

Jüri Üyeleri

Başkan : Prof. Dr. Kemal GÜVEN
Üye : Doç. Dr. Sait EROĞAN
Üye : Yrd. Doç. Dr. Sema AGÜLOĞLU FİNCAN

Tez Sınavına Sınav Tarihi: 28/06/2011

Yukarıdaki bilgilerin doğruluğunu onaylıyorum.

[Şahsetimli imzalar]

Prof. Dr. Hamdi TEMEL
Enstitü Müdürü
TEŞEKKÜR

Tezimin planlanması ve gerçekleştirilmesi sırasında öneri ve yardımları, çalışmalarım sırasında bilgi ve deneyimlerini esirgemeyen değerli danışman hocam Sayın Prof. Dr. Kemal GÜVEN’e sonsuz teşekkürlerimi sunarım.

Mikroorganizmanın teminindeki yardım ve ilgileri için Sayın Yrd. Doç. Dr. Reyhan GÜL GÜVEN’e teşekkürlerimi sunarım.

Deneysel aşamada ve tez yazım aşamasında bilgisini ve yardımini esirgemeyen sayım hocam Arş. Gör. Fatma MATPAN BEKLER’e teşekkürlerimi sunarım.

Çalışmalarım sırasında manevi desteğini gördüğüm sayım hocam Arş. Gör. Özlem DEMİRCİ’ye teşekkürlerimi sunarım.

Çalışmalarım sırasında beni her konuda destekleyip, yardımları esirgemeyen ve benim için her türlü fedakârlığı yapan değerli aileme teşekkürlerimi sunarım.

Deneysel aşamada, ihtiyaç duyduğum her zaman yardımini ve manevi desteğini gördüğüm değerli doktora arkadaşım Ömer ACER’e teşekkürlerimi sunarım.

Çalışmalarım esnasında yardımini ve manevi desteğini gördüğüm değerli doktora arkadaşım Alevcan KAPLAN’a teşekkürlerimi sunarım.

Çalışmalarım sırasında manevi desteklerini gördüğüm ve aynı laboratuari paylaştığım bütün yüksek lisans ve doktora arkadaşlarına teşekkürlerimi sunarım.

Dicle Üniversitesi Bilimsel Araştırma Komisyonunun projemize verdiği destekten dolayı teşekkür ederim.
İÇİNDEKİLER

TEŞEKKÜR .. 1

İÇİNDEKİLER .. II

ÖZET .. VII

ABSTRACT ... VIII

ÇİZELGE LISTESİ ... IX

ŞEKİL LISTESİ ... X

KISALTMA VE SİMGELER .. XI

1. GİRİŞ ... 1

1.1. Biyoteknoloji .. 3

1.2. Enzimler .. 6

1.3. Proteazlar .. 9

1.4. Proteazların Sınıflandırılması .. 10

1.4.1. Ekzopeptidazlar ... 10

1.4.1.1. Aminopeptidazlar .. 11

1.4.1.2. Karboksipeptidazlar .. 11

1.4.2. Endopeptidazlar ... 12

1.4.2.1. Serin Proteazlar .. 13

1.4.2.2. Aspartik Asit Proteazlar ... 14

1.4.2.3. Sistein / Tiyol Proteazlar .. 14

1.4.2.4. Metaloproteazlar .. 14
1.5. Mikrobiyal Proteazlar

1.6. *Bacillus* Cinsi

1.6.1. *Bacillus cereus*

1.7. Proteazların Endüstrideki Kulanım Alanları

1.7.1. Deterjan Endüstrisinde Proteazlar

1.7.2. Deri Endüstrisinde Proteazlar

1.7.3. Gıda Endüstrisinde Proteazlar

1.7.4. Tekstil Endüstrisinde Proteazlar

1.7.5. Atık Arıtımı ve Dönüşümü Endüstrisinde Proteazlar

2. KAYNAK ÖZETLERİ

3. MATERYAL VE METOT

3.1. Materyal

3.1.1. Kimyasal Maddeler

3.1.1.1. Besi Yeri Maddeleri

3.1.1.2. Azot Kaynakları

3.1.1.3. Kimyasal Maddeler, Deterjanlar ve Metaller

3.1.1.4. Elektroforetik Maddeler

3.1.2. Besi Yerleri

3.1.3. Tamponlar

3.1.4. Kullanılan Aletler

3.2. Metot

3.2.1. Bakterilerin Kültüre Alınıması

3.2.2. Proteaz Aktivite Tayini
3.2.2. Protein Miktar Tayini ... 40
3.2.4. Sicaklığın Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması ... 40
3.2.5. pH 'in Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması .. 41
3.2.6. Farklı Besiyerlerinin Enzim Üretimi Üzerindeki Etkisinin Araştırılması 41
3.2.7. Değişik İnkübasyon Sürelerinin Enzim Üretimi Üzerindeki Etkisinin Araştırılması 41
3.2.8. Farklı Azot Kaynaklarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması 41
3.2.9. Farklı Yeast Ekstrakt Konsantrasyonlarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması ... 42
3.2.10. Farklı Karbon Kaynaklarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması 42
3.2.11. Farklı Metal İyonlarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması 42
3.2.12. CaCl\textsubscript{2}’ nin Enzim Üretimi Üzerindeki Etkisinin Araştırılması 42
3.2.13. Enzimin Saflaştırılması ... 43
3.2.13.1. Çöktürme ve Diyaliz ... 43
3.2.13.2. Sefadeks G-75 Jel Geçirgenlik Kolon Kromatografisi ... 43
3.2.14. Bazı Metal İyonlarının Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması 44
3.2.15. Bazı Metal Şelatör ve Kimyasal Maddelerin Enzim Aktivitesi Üzerine Etkisinin Araştırılması ... 44
3.2.16. Bazı Deterjanların Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması 45
3.2.17. Enzimin Termal Stabilitesinin Belirlenmesi ve CaCl\textsubscript{2}’ nin Termostabiliteye Etkisinin Araştırılması ... 45
3.2.18. Proteaz Enziminin Elektroforetik Analizi .. 45
3.2.18.1. % 0.1 Jelatin İçeren Non -Denatüre Poliakrilamid Jel Elektroforezi İle Zimogram Analizi ve SDS-PAGE İle Enzimin Moleküler Ağırlığının Belirlenmesi .. 46
4. BULGULAR VE TARTIŞMA

4.1. BULGULAR

4.1.1. Sıcaklığın Enzim Aktivitesi Üzerindeki Etkisi

4.1.2. pH’ın Enzim Aktivitesi Üzerindeki Etkisi

4.1.3. Farklı Besi Yerlerinin Enzim Üretimi Üzerindeki Etkisi

4.1.4. BM Besi Yerinde Değişik İnkübasyon Sürelerinin Enzim Üretimi Üzerindeki Etkisi

4.1.5. Farklı Azot Kaynaklarının Enzim Üretimi Üzerindeki Etkisi

4.1.6. Farklı Yeast Ekstrakt Konsantrasyonlarının Enzim Üretimi Üzerindeki Etkisi

4.1.7. Farklı Karbon Kaynaklarının Enzim Üretimi Üzerindeki Etkisi

4.1.8. Farklı Metal İyonların Enzim Üretimi Üzerindeki Etkisi

4.1.9. CaCl₂’nin Enzim Üretimi Üzerindeki Etkisi

4.1.10. Proteaz Enziminin Saflaştırılması

4.1.11. Bazı Metal İyonların Enzim Aktivitesi Üzerindeki Etkisi

4.1.13. Bazı Deterjanların Enzim Aktivitesi Üzerindeki Etkisi

4.1.14. Enzimin Termal Stabilitesinin Belirlenmesi

4.1.15. CaCl₂’nin Termostabiliteye Etkisinin Araştırılması

4.1.16. Proteaz Enziminin Elektroforetik Analizi

4.1.16.1. Sodyum Dodesil Sülfat Poliakrilamid Jel Elektroforezi (SDS-PAGE) ile Enzimin Molekül Ağırlığının Belirlenmesi

4.1.16.2. %0.1 Jelatin İçeren Non-denature Poliakrilamid Jel Elektroforezi ile Zimogram Analizi
<table>
<thead>
<tr>
<th>4.2.</th>
<th>TARTIŞMA</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>SONUÇ VE ÖNERİLER</td>
<td>75</td>
</tr>
<tr>
<td>6.</td>
<td>KAYNAKLAR</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>ÖZGEÇMİŞ</td>
<td>87</td>
</tr>
</tbody>
</table>
ÖZET

Bacillus cereus KG5’ İN PROTEAZ ENZİMİ ÜZERİNE ÇALIŞMALAR

YÜKSEK LİSANS TEZİ

Nazenin AHMETOĞLU

DİCLE ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ
BİYOLOJİ ANABİLİM DALI

2011

Bu çalışmada, Kös (Bingöl) kaplıcasından izole edilen *Bacillus cereus* KG5’ in endüstride geniş uygulama alanı sahip olan ekstraselüler proteaz enzimi üzerine çalışmaları yapılmıştır.

B. cereus KG5 BM besi yerinde kültüre alındı ve değişik inkübasyon sürelerinde proteaz aktivite tayini yapılarak maksimum enzim üretimi 24.saatte tespit edildi. pH ve sıcaklık proteaz enzimi üzerindeki etkisi pH 6-11 ve sıcaklık 20°C ile 70ºC arasında araştırıldı. Enzimin optimum pH ve sıcaklık değerinin sırasıyla 7.0 ve 40-45ºC arası olduğu tespit edildi. Farklı besi yerlerinin, %1.2 oranında farklı azot ve %2 oranında karbon kaynaklarının enzim üretimi üzerindeki etkisi incelendi. Maksimum enzim üretimi BM besi yerinde elde edildi. En iyi azot kaynağı yeast ekstrakt ve üre, en iyi karbon kaynağı ise laktoz ve galaktoz olarak belirlenirken karbon kaynaklarından glukozun enzim üretiminin represe ettiği tespit edildi. Farklı yeast ekstrakt konsantrasyonlarının enzim üretimi üzerindeki etkisi araştırıldı. %0.5 yeast ekstraktta maksimum enzim üretimi elde edildi. Artan yeast ekstrakt konsantrasyonlarının enzim üretiminin azaldığı tespit edildi. %0.5 oranında farklı metal iyonlarının enzim üretimi üzerindeki etkisi araştırıldı. CaCl₂ nin enzim üretiminin yaklaşık 2 kat artırduğu; NaCl ve MgCl₂ nin enzim üretimi önemli ölçüde azaldığı tespit edildi. CaCl₂ nin enzim üretimi üzerinden %0.5, en düşük üretim ise %0 CaCl₂ konsantrasyonlarında elde edildi.

Bu çalışmada *B. cereus* KG5’ e ait kısmi olarak saflaştırılan proteaz enzimi amonyum sülfat çöktürmesi, dializ ve Sefadeks G-75 beylık geçiren kromatografisi ile %23 verimle 13 kat saflaştırıldı. Sefadeks G-75 beylık geçiren kromatografisi ile saflaştırılan enzimin nondenatüre poliakrilamid jeli elektroforezi ile varlığı tespit edildikten sonra SDS-PAGE ile de molekül ağırlığı yaklaşık 48 kDa civarında olduğu tespit edildi.

Anahtar Kelimeler: *Bacillus cereus* KG5, Biyoteknoloji, proteaz enzim üretimi ve karakterizasyonu
ABSTRACT

STUDIES ON THE PROTEASE ENZYME IN *Bacillus cereus* KG5

MASTER THESIS

Nazenin AHMETOĞLU

DEPARTMENT OF BIOLOGY
INSTITUTE OF NATURAL AND APPLIED SCIENCES
UNIVERSITY OF DICLE

In this survey it is aimed to study the extracellular protease enzyme which has a wide application in the industry of *Bacillus cereus* KG5 which has been isolated in Kös (Bingöl) hot spring.

B. cereus KG5 BM has taken under culturization at the feed-lot and protease activity is determined at various incubation times and the maximum enzyme production is determined at the 24th hour. The effect of pH and temperature over the protease enzyme is studied under pH 6-11 and between 20°C and 70°C temperatures. It was determined that the optimum value of pH and temperature for the enzyme is respectively 7.0 and 40-45°C. The effects of different feed-lots and %1.2 percent different nitrogen and %2 percent carbon sources has been studied. The maximum enzyme production is acquired at BM feed-lot. It is determined that the best nitrogen source is yeast extract and urea, the best carbon source is lactose and galactose meanwhile gluoz as a source of carbon inhibited the production of the enzyme. Different concentransations of yeast extract effect over enzyme production is studied. The maximum enzyme production is acquired at %0.5 yeast extract. It is observed that the enzyme production is degraded by yeast extract increase. Different metal ions effect at the ratio of %0.5 percent over enzyme production is studied. The CaCl₂ approximately doubled the enzyme production, NaCl ve MgCl₂ dramatically reduced the enzyme production. CaCl₂’s effect over enzyme production is studied. The maximum enzyme production is acquired at %0.5, and the lowest enzyme production is acquired at %0 CaCl₂ concentransations.

Some metals, chemicals, metal chelat agents and detergents effects over protease enzyme activity that is belonging to partially purified *B. cereus* KG5 is studied. CaCl₂ (%142 at 2 mM), MgCl₂ (%89 at 5 mM and 10 mM) and MnCl₂ (%29 at 2 mM) increased the protease activity at a certain extent, CuCl₂, HgCl₂ and ZnCl₂ (at 10 mM) inhibited the enzyme activity respectively at %100, over %100 and %96, EDTA and 1-10 phenantroline which are metal chelat agents (respectively %96 and %95 at 10 mM) heavily inhibited the protease enzyme. At the effect of PMSF, an inhibition due to etanol has been determined. It is determined that the enzyme activity is inhibited at % 1 SDS fully, %1 Alo at %84 percent, % 0.5 Triton X-100 at % 5 percent and 0.1 Tween-80 at % 2 percent . As a result of studying the thermal stability of the enzyme, it is determined that it is still stable at 40°C temperature at the end of 120 minutes. It is determined that the thermal stability of the enzyme is increased by CaCl₂ . It is determined that 2 mM CaCl₂ enzyme at 50°C temperature at the end of the 120 minutes still preserved the original stability at % 102 percent.

In this study, the protease of *B. cereus* KG5 was purified by ammonium sulfate precipitation&dialysis and Sephadex G-75 gel permeability chromatography with 13 fold and %23 recovery. The enzyme purified by the Sephadex G-75 gel permeability chromatography existence is determined by nondenaturing polyacrilamide gel electrophoresis meanwhile the molecule weight is determined approximately 48 kDa by SDS-PAGE.

Key words: Bacillus cereus KG5, Biotechnology, protease enzyme production and characterization.
ÇIZELGE LİSTESİ

<table>
<thead>
<tr>
<th>Çizelge No</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çizelge 1.1.</td>
<td>6</td>
</tr>
<tr>
<td>Değişik endüstriyel alanlarda kullanılan enzimler ve uygulamaları</td>
<td></td>
</tr>
<tr>
<td>Çizelge 1.2.</td>
<td>19</td>
</tr>
<tr>
<td>Bacillus cereus’un taksonomik yeri</td>
<td></td>
</tr>
<tr>
<td>Çizelge 4.1.</td>
<td>56</td>
</tr>
<tr>
<td>Proteaz enziminin saflaştırma tablosu</td>
<td></td>
</tr>
<tr>
<td>Çizelge 4.2.</td>
<td>57</td>
</tr>
<tr>
<td>Bazı metal iyonlarının enzim aktivitesi üzerindeki etkisi</td>
<td></td>
</tr>
<tr>
<td>Çizelge 4.3.</td>
<td>58</td>
</tr>
<tr>
<td>Bazı metal şelatör ve kimyasal maddelerin enzim aktivitesi üzerindeki etkisi</td>
<td></td>
</tr>
<tr>
<td>Şekil No</td>
<td>Açıklama</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Şekil 1.1</td>
<td>Peptid bağlarının proteazlar tarafından katalizi (proteoliz)</td>
</tr>
<tr>
<td>Şekil 1.2</td>
<td>Ekzopeptidazların etki mekanizmaları</td>
</tr>
<tr>
<td>Şekil 1.3</td>
<td>Aminopeptidazların alt grupları ve etki mekanizmaları</td>
</tr>
<tr>
<td>Şekil 1.4</td>
<td>Karboksipeptidazların alt grupları ve etki mekanizmaları</td>
</tr>
<tr>
<td>Şekil 1.5</td>
<td>Omega peptidazların etki mekanizması</td>
</tr>
<tr>
<td>Şekil 1.6</td>
<td>Endopeptidazların etki mekanizması</td>
</tr>
<tr>
<td>Şekil 1.7</td>
<td>Proteazların endüstride kullanım yüzdeleri</td>
</tr>
<tr>
<td>Şekil 4.1</td>
<td>Sıcaklığın enzim aktivitesi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.2</td>
<td>pH’ in enzim aktivitesi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.3</td>
<td>Besi yerlerinin enzim üretimi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.4</td>
<td>BM besiyerinde değişik inkübasyon sürelerinin enzim üretimi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.5</td>
<td>Farklı azot kaynaklarının enzim üretimi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.6</td>
<td>Farklı yeast ekstrakt konsantrasyonlarının enzim üretimi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.7</td>
<td>Farklı karbon kaynaklarının enzim üretimi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.8</td>
<td>Farklı metal iyonlarının enzim üretimi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.9</td>
<td>CaCl₂ nin enzim üretimi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.10</td>
<td>Bazı deterjanların enzim aktivitesi üzerindeki etkisi</td>
</tr>
<tr>
<td>Şekil 4.11</td>
<td>Enzimin termal stabilitesinin belirlenmesi</td>
</tr>
<tr>
<td>Şekil 4.12</td>
<td>CaCl₂ nin termostabiliteye etkisi</td>
</tr>
<tr>
<td>Şekil 4.13</td>
<td>Standart proteinlerin R₀ değerleri yardımcıla proteaz enziminin molekül ağrılığının belirlenmesi</td>
</tr>
<tr>
<td>Şekil 4.14</td>
<td>SDS-PAGE</td>
</tr>
<tr>
<td>Şekil 4.15</td>
<td>%0.1 jelatin içeren non-denatüre jel elektroforezi</td>
</tr>
</tbody>
</table>
KISALTMA VE SİMGELEER

NB : Nutrient broth
BM : Bazal medium
GPM : Glukoz pepton medium
FCR : Folin-Ciocalteu reaktifi
PMSF: Phenylmethylsulfonyl fluoride
EDTA: Ethylenediamintetra acetic acide
DFP : Diizopropil floro fosfat
APS : Amonyum per sülfat
TEMED: Tetrametil etilen diamin
BFB : Brom Fenol Blue
rpm : Devir/dakika
BSA : Bovine serum albumin
TCA : Trichloro acetic acid
NaOH: Sodyum hidroksit
U/mg : Ünite/miligram
OD : Optik density
mM : Milimolar
pI : İzoelektrik nokta
1. GİRİŞ

Ekstremofilik mikroorganizmalar; volkanların yüksek sıcaklıklarda, kutupların düşük sıcaklıklarda, çok düşük ve çok yüksek pH değerlerinde (pH 0-3 veya pH 10-12) veya çok yüksek tuz konsantrasyonlarında (%5-30) yaşamak için adapte olmuşlardır (Niehaus ve ark. 1999). Buralarda yaşayan termoasidofilik ve alkalifilik bakterilerden elde edilen enzimler ekstrem pH ve sıcaklık koşullarına dayanıklı olduğu için endüstriyel alanda yoğun olarak kullanılmaya başlanmıştır (Kıran ve ark. 2006).

Bakterilerden elde edilen ekstrasellüler enzimler endüstride birçok amaç için kullanılmaktadır (Appak 2006). Ekstrasellüler enzimler (ekzoenzimler) hücre içinde sentezlendiğinde sonra dışarı salınarak buradaki gıda moleküllerinin ayrılarak ve hücre duvarından geçebilecek düzeyeye inmelerini katalize eder. Bu tarz aktivite gösteren enzimler (hidrolitik enzimler) arasında, başlica, proteinaz’lar (peptidaz, jelinaz, kollajenaz, kazeinaz, fibrinolizin, vs), karbohidraz’lar (sellülaz, amilaz, maltaz, laktaz (β-galaktozidaz), sukraz, hıyalurinidaz, vs) ve lipaz’lar, nukleaz ve diğerleri bulunmaktadır.

Dünya genelinde endüstriyel enzim pazarı 1.4 milyar USD dolayında olup, yılda %10’un üzerinde pazar ağı artışı ve %4-5 oranında satış artışı ile en yaygın tüketim alanlarındandır. Endüstriyel enzim üretiminin %75’i gıda, deterjan ve nişasta endüstrileri içinde yer almaktadır (Balkan 2008). Proteazlar, toplam endüstriyel enzim ticaretinin yaklaşık %60’ını oluşturmakta (Kıran ve ark. 2006). Bununla birlikte mikrobiyal çeşitliliği derinlemesine inceleyerek ticari olarak daha kullanılışlı enzimler üretebilen mikroorganizmaların bulunma şansı da daima vardır (Oberoi ve ark. 2001).
1.1. Biyoteknoloji

Biyoteknolojinin en özgün tarifi, biyolojik organizmaların ve sistemlerin veya proseslerin üretim ve hizmet endüstrilerine uygulanmasıdır (Çırakoğlu 1990).

Günümüzde enerjiden tarıma, sağlıktan çevre kirlenmesiyle mücadeleye, kozmetik sanayiden madenciliğe kadar birçok alanda biyoteknoloji yaygın bir şekilde kullanılmaktadır (Çırakoğlu 1990). Gelişmiş ülkelerin üretimin %40’ını biyolojik ve biyoteknolojik kaynaklı maddeler oluşturmaktadır ve gelecek yüzünün başında biyoteknolojiye dayalı üretimin yılda 40 milyar dolara ulaşması beklenmektedir (Başağa ve Çetindamar 2000).

Biyoteknolojinin klasik tanımlı kısaca "Biyokatalizatörlerin teknik boyutta kullanımı" şeklinde özetlenebilir. Konuya bu boyutta yaklaşılığında bir yandan olağanüstü bir seçimlilikte etki gösteren biyokatalizatörlerin (enzimler ve hücreler) endüstriyel uygulamalarla elverişli immobilize formlarının geliştirilmesi, diğer taraftan enstrümentasyon alanındaki teknolojik gelişmeler bugün kadar kimyanın etkinlik alanına giren birçok prosesin yerini daha ekonomik olan biyoproseslere bırakması sonucunu doğurmıştır (Telefoncu ve Pazarlioğlu 1995).

Endüstriyel Biyoteknoloji, biyoteknolojinin endüstriyel proses ve üretimlerdeki uygulamalarından geri dönüşümlü ürün eldesi için biyokütlenin kullanımına kadar oldukça geniş bir alandaki uygulamalarını içerir (Yücel 2010).

Endüstriyel biyoteknoloji şirketleri, kimyasal üretimlerde kullanma amacıyla biyolojik sistemlerden yararlanarak enzim gibi biyokatalizörleri ya da kimyasal maddeleri üretirler. Günümüz üretim süreçlerini kolaylaştıracak ve iyileştirecek daha

Enzimlerin bu şekilde endüstriyel süreçlerde kullanımları işlemlerine “enzim teknolojisi” denir. En geniş tanımı ile enzim teknolojisi; serbest enzim ve tüm hücre biyokatalizörlerinin hizmet ve mal üretiminde kullanılması olarak görülebilir. Enzim teknolojisinin daha dar bir tanımlı ise büyük ölçekli biyoproses rekabetinde enzimlerin kullanımına izin veren teknolojik bir kavram olarak görülebilir (Beilen ve Li 2002).

Enzim teknolojisi;

- **mikrobiyal işlemler** (öncesi suşların seçimi, geliştirilmesi vb.),
- **enzimlerin fermentasyon yoluya üretimleri** (büyük ölçekte üretimi için yapılan besiyer, ortam koşulları vb. düzeylerdeki optimizasyonlar),
- **katalitik etkinliğin arttırılması** için enzimlerin üç boyutlu yapılarının değiştirilmesi (protein mühendisliği),
izolasyonları ve immobilizasyonları (enzimlerin çözünmeyen destek materyaller yardımıyla suda çözünmeyen hale getirilmesi) çalışmalarını kapsar.

Enzim teknolojisi, ekonomik, etkili ve ekolojik tekniklere olan büyük ihtiyaç nedeniyle ilerleme kaydetmiştir. Biyoteknoloji sayesinde, yeni tür enzimlerin büyük ölçeklerde ve ekonomik olarak üretilmesi mümkün olmuştur. Üretimi, sabitlenmesi (non-reactive), paketlenmesi ve belirli ölçeklerde dağıtımının yapılabildiğini enzimler, raflarda duran ekzotik bir maddeden ziyade, büyük depolarda muhafaza edilebilen endüstriyel bir madde olmuştur (Karademir 2002).

Enzim teknolojisinin giderek gelişmesi ürünlerin kullanım alanlarının çeşitliliği ve ekonomik değerinin çok yüksek olması nedeniyle biyoteknolojinin endüstriyel enzimler ile ilgili alanında yapılan çeşitli araştırmalar daha da önem kazanmaktadır (Kıran ve ark. 2006).

Enzimler, enzimatik süreçlerin çevre kirliliğine daha az yol açmaları, kimyasal süreçleri daha ileri koşullarda ve ekonomik olarak gerçekleştirilebilmeleri sebebi ile günümüzde her geçen gün daha da artarak birçok endüstri alanında kimyasal süreçlerin yerini almakta (Öztürk 2007).

Dünya enzim endüstrisindeki kullanım alanının %29’u gıda sektörü, %15’ini hayvan yemi sektörü ve %56’sını genel teknik alanları oluşturmaktadır (Schallmey 2004). Endüstriyel olarak üretilen enzimlerin yaklaşık %75’inin kullanıldığı temel endüstriler; deterjan (%37), tekstil (%12), nişasta (%11), firınlama (%8) ve hayansal gıda (%6) endüstrilidir (Shrinivas 2008).

Değişik endüstriyel alanlarda kullanılan enzimler ve uygulamaları Tablo 1.’de verilmiştir.

2007’de dünyada kullanılan enzimler üzerine yayınlanan bir çalışmada, dünya enzim marketinin her yıl %7.6 oranında arttığı ve 2011 yılında 6 milyon dolara ulaşmasını beklediği belirtilmştir (Shivanand ve ark. 2009, Sundararajan ve ark. 2011).

Tüm dünyada enzimler fiziksel, analitik ve endüstriyel uygulamaların çoğunda kullanıldıklarından dolayı araştırmacıların dikkatini çekmektedir. Geniş biyokimyasal çeşitliliğinden, kütle kültürünün olabilirliğinden ve genetik manipulasyona
uygunluğundan dolayı özellikle mikrobiyal enzimler araştırmacıların dikkatini çekmekteidir (Patel 2005).

Mikroorganizmalardan elde edilen enzimlerin tüm dünyada genelinde yıllık kullanım oranlarına bakıldığında %25 alkalin proteaz, %21 diğer proteazlar, %18 amilaz, %10 renin, %3 tripsin, %3 lipaz, %10 diğer karbonhidrat parçalayan enzimler (selülas ve ksilanas gibi), %10 kadar ise analitik ve farmasötik enzimlerin olduğu şeklinde bir dağılım belirlenmiştir (Rao ve ark. 1998).

Çizelge 1.1. Değişik endüstriyel alanlarda kullanılan enzimler ve uygulamaları (Kirk ve ark. 2002)

<table>
<thead>
<tr>
<th>Endüstri</th>
<th>Enzim sınıfı</th>
<th>Uygulama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterjan (ganışar ve bukçul)</td>
<td>Proteaz</td>
<td>Protein lekelemelerin giderilmesi</td>
</tr>
<tr>
<td></td>
<td>Amilaz</td>
<td>Nıçasta lekelemelerin giderilmesi</td>
</tr>
<tr>
<td></td>
<td>Lipaz</td>
<td>Yaş lekelemelerin giderilmesi</td>
</tr>
<tr>
<td></td>
<td>Selülas</td>
<td>Tenizlene, renk a princípio, anti-redpositor (pamuk)</td>
</tr>
<tr>
<td></td>
<td>Mannanaz</td>
<td>Mannan lekelemelerin giderilmesi (görülmeyecek lekeler)</td>
</tr>
<tr>
<td>Nıçasta ve Yakıt</td>
<td>Amilaz</td>
<td>Nıçastaın sülavlantılmasa ve şekelleştirilmesi</td>
</tr>
<tr>
<td></td>
<td>Amilazglikozidaz</td>
<td>Şekerleştirmeye</td>
</tr>
<tr>
<td></td>
<td>Palmitaz</td>
<td>Şekerleştirmeye</td>
</tr>
<tr>
<td></td>
<td>Glikoz inomeraz</td>
<td>Glukozaın fraktoz dönüşünü</td>
</tr>
<tr>
<td></td>
<td>Sıklık emo nanaz</td>
<td>Sıkliktan süzüntü</td>
</tr>
<tr>
<td></td>
<td>Kalınaz</td>
<td>Viskozitenin düşürülimesi (yakıt ve nıçasta)</td>
</tr>
<tr>
<td></td>
<td>Proteaz</td>
<td>Proteaz</td>
</tr>
<tr>
<td>Gida</td>
<td>Proteaz</td>
<td>Sütlün çökürtülmesi, yenidogan formalayonları, aroma</td>
</tr>
<tr>
<td></td>
<td>Lipaz</td>
<td>Peynir aroması</td>
</tr>
<tr>
<td></td>
<td>Laktaz</td>
<td>Süttün lekotuz giderilmesi</td>
</tr>
<tr>
<td></td>
<td>Pektin mutlu estezaz</td>
<td>Mevyne tabanlı ürünleme joleştirilmesi</td>
</tr>
<tr>
<td></td>
<td>Pektinaz</td>
<td>Mevyne tabanlı joleştirme</td>
</tr>
<tr>
<td></td>
<td>Transferasinzaz</td>
<td>Visk o-elastic özelliklerinin modifikasyonu</td>
</tr>
<tr>
<td>Fuarlık</td>
<td>Amilaz</td>
<td>Elimeğin yumuşatılmasına ve kabartılmasına, usı ağırlaması</td>
</tr>
<tr>
<td></td>
<td>Kalınaz</td>
<td>Hamuru garnırtılmasına</td>
</tr>
<tr>
<td></td>
<td>Lipaz</td>
<td>Hamur karılığı ve garnırtılmasına (nı su emilisifet)</td>
</tr>
<tr>
<td></td>
<td>Fosfolipaz</td>
<td>Hamur karılığı ve garnırtılmasına (nı su emilisifet)</td>
</tr>
<tr>
<td></td>
<td>Glükoksidaz</td>
<td>Hamuru güçlendirilmesi</td>
</tr>
<tr>
<td></td>
<td>Lipokistaz</td>
<td>Hamuru güçlendirilmesi, ekmeğin beyazlaşması</td>
</tr>
<tr>
<td></td>
<td>Proteaz</td>
<td>Doküvi ve kuştöye</td>
</tr>
<tr>
<td></td>
<td>Transgluntazanaz</td>
<td>Lamanın düşmıs güçlendirilmiş havuç</td>
</tr>
<tr>
<td>Hayvan Yemi</td>
<td>Filaz</td>
<td>Fıstıt sindirilebilirlik-foşor ağırlaması</td>
</tr>
<tr>
<td></td>
<td>Kalınaz</td>
<td>Sindirilebilirlik</td>
</tr>
<tr>
<td></td>
<td>β- Glukanaz</td>
<td>Sindirilebilirlik</td>
</tr>
<tr>
<td>Meşrubat</td>
<td>Pektinaz</td>
<td>Pektin giderilmesi, lapalstraße</td>
</tr>
<tr>
<td></td>
<td>Amilaz</td>
<td>Meyve suyu mannelesi, dışık kalorili bir</td>
</tr>
<tr>
<td></td>
<td>β- Glukanaz</td>
<td>Lapalstraße</td>
</tr>
<tr>
<td></td>
<td>Asetolumisit dekarboksiaz</td>
<td>Birinin ogluşlandırılması</td>
</tr>
<tr>
<td></td>
<td>Lakaz</td>
<td>Berraklaştırır (meyve suyu), aroma (bıra)</td>
</tr>
</tbody>
</table>

1.2. Enzimler

Enzimler, canlı organizmada oluşan tüm tepkimelerin uygun koşullarda gerçekleştmesini sağlayan ve bu tepkimeleri düzenleyen, katalitik RNA moleküllerinin küçük bir grubu (ribozimler) hariç olmak üzere, genellikle protein yapılarındaki özellemiş biyokatalizörlerdir. Enzimler de diğer katalizörler gibi reaksiyon hızını

6
arttırarak çalışırlar. Benzer koşullar altında, enzim varlığında tepkime oranı, katalizör yokluğunda reaksiyon oranına göre bir veya birkaç milyon kat daha yüksek olabilmektedir.

Endüstrinin hemen her alanında kullanılan enzimler genellikle mikroorganizmalardan elde edilmektedir (Kıran ve ark. 2006).

Enzimlerin teknoloji ve sanayide kullanımı için saflaştırılması gerekmektedir. Bu süreçte de gerek kolay üretilmeleri gerekse üretilmeleri enzimlerin diğer organizmaları oranla daha kolay saflaştırmaları nedeni ile biyoteknolojik süreçlerde mikroorganizmalar temel enzim kaynağı olarak karşımıza çıkmaktadır. Bugüne kadar tanımlanan enzimlerin büyük çoğunuğu düşük sıcaklıkta ve dar bir pH aralığında

7
1. GİRİŞ

Enzim terminolojisi ve sınıflandırılması için 1961 yılında toplanan ilk Enzim Komisyonun raporuna göre enzimler, katalizörlik yapılan tepkimenin tipine göre 6 ana sınıf ayrılmıştır. Bu sınıflar:

Oksidoredüktazlar: Bu sınıf, redoks tepkimelerini katalizleyen tüm enzimleri içine alır, bir substrattan diğerine H, O₂, ve e⁻' transferini sağlarlar.

Transferazlar: Transferazlar, metil, açıkl, amino glikozil veya fosfat gibi belirli bir grubun bir maddeden diğerine transferini kataliz eder.

Hidrolazlar: Ester, peptid, eter, glikoz, asit, anhidrit, C-O, C-N, C-C bağlarını hidroliz ederler. Proteaz enzimleri bu gruptandır.

Liyazlar: Susuz ortamdaki grupların uzaklaştırılmasını katalizlerler.
İzomerazlar: Bir molekül içinde geometrik veya yapısal yeniden ayarlamaları katalize ederler.

Ligazlar: ATP veya diğer nükleosit trifosfat içindeki pirofosfatın hidrolizi ile eşleşmiş olan iki molekülün birleşmesini katalize ederler (Özçömlekçi 2006).

Endüstriyel alanda kullanılan enzimlerin %80’si polimerlerin doğal yapısını bozabilme yeteneğine sahip olan hidrolazlardır (Gözükara 1997). Endüstriyel açıdan çok önemli olan hidrolazların %60’ını ise proteazlar oluşturmaktadır (Özçömlekçi 2006).

1.3. Proteazlar

Proteazlar; proteinlerdeki peptid bağlarının hidrolizini katalizleyen enzimlerin bir grubudur. Proteazlar, büyük polipeptidleri ve proteinleri hücreler tarafından absorbanabilen daha küçük moleküller e hidroliz eder (Salleh ve ark. 2006).

Uluslararası Biyokimya ve Moleküler Biyoloji Birliği tarafından geliştirilen ve enzimlerin adlandırılması için kullanılan EC numaralarına göre; Sınıf 3 (hidrolazlar) ve alt sınıf 3.4 (peptidazlar ya da peptid hidrolazlar) grubuna ait enzimlerdir ve EC 3.4. başlığıyla ifade edilirler.

Proteoliz olarak adlandırılan peptid bağlarının proteazlar tarafından hidrolizi Şekil 1.1.‘de görüldüğü gibidir. Proteolizin ürünleri protein, peptid fragmentleri ve serbest aminoasitlerdir (Gençkal 2004).

Proteazlar; prokaryot, mantar, bitki ve hayvanları içeren dünyadaki tüm yaşam formlarının gerekli bileşiklerdir. Yaşayan tüm organizmalarında bulunan proteolitik enzimler, hücre gelişimi ve farklılaşması için gereklidir (Gupta ve ark. 2002).

Proteazlar endüstriyel enzimlerin üç büyük grubundan birini tensil eder ve dünya çapındaki toplam enzim satışının yaklaşık %60’ını oluşturarak endüstriyel enzim marketinde büyük bir hakimiyete sahiptirler (Rao ve ark. 1998). Endüstriyel marketteki proteazların bu hakimiyetinin 1998 yılında tahmin edilen değeri 1 milyon dolarken 2005 yılına kadar artarak devam etmiştir (Gupta ve ark. 2002).
1.4. Proteazların sınıflandırılması

Milletlerarası Biyokimya Birliği (International Union of Biochemistry) tarafından yapılan enzim sınıflandırılmasında tüm enzimler katalizledikleri reaksiyon tipine göre 6 sınıfta ayrılışlar ve proteazlar 3. sırada yer alan hidrolazlar sınıfına dahil edilmiştir. Proteazların alt sınıf peptid bağlarını parçalamadan dolayı 3.4 olarak belirlenmiştir. Büyük bir aileyi (E.C 3.4) oluşturan proteazlar, Avrupa Biyokimya Komitesi tarafından EC sisteminde, ekzopeptidazlar (E.C 3.4.21-99) ve endopeptidazlar (E.C 3.4.11-19) olmak üzere 2 gruba ayrılmışlardır (Sevinç 2010).

1.4.1. Ekzopeptidazlar

Ekzopeptidazlar, polipeptid zincirlerinin uçlarındaki serbest amino (N) ya da karboksil (C) gruplarına atak yapmaktadırlar. Ekzopeptidazlar etki ettikleri protein zincirinin sonundaki grup serbest amino grubu ise aminopeptidaz, serbest karboksil ise karboksipeptidaz, olarak adlandırılmaktadır (Şekil 1.2.).
1.4.1.1. Aminopeptidazlar

![Aminopeptidazlar, Dipeptidil Peptidazlar, Tripeptidil Peptidazlar](image)

Şekil 1.3. Aminopeptidazların alt grupları ve etki mekanizmaları

1.4.1.2. Karboksipeptidazlar

Karboksipeptidazlar, enzimlerin aktif bölgesindeki aminoasit çeşitlerinin yapısına göre üç ana gruba ayrılır (Şekil 1.4.). Bunlar; serin karboksipeptidazlar, metallo karboksipeptidazlar ve sistein karboksipeptidazlardır (Rao ve ark. 1998).
1. Giriş

Omegapeptidazlar, serbest bir N ya da C terminal ucuna ihtiyaç duymazlar. Endopeptidazlardan farklı olarak N ya da C terminal uçlara yakın bölgelerde hidroliz etme yeteneğine sahiptirler (Şekil 1.5). Omegapeptidazlar, amino veya karboksipeptidazların direkt etkide bulunamadıkları polipeptid bölgelerini hidroliz ederler (Sevärc 2010).

1.4.2. Endopeptidazlar

Endopeptidazlar, polipeptid zincirlerinin iç bölgelerindeki peptid bağılarına etki etmeleri ile karakterize olurlar (Şekil 1.6). Serbest N ya da C grubunun varlığı enzimatik aktivite üzerine negatif etki yaratmaktadır.

Endopeptidazlar, serin, sistein, aspartik ve metallo proteazlar olmak üzere dört gruba ayrılmaktadırlar. Ayrıca katalitik mekanizması bilinmeyen endopeptidazlar olarak da ayrıra bir grupta bulunmaktadır.
1.4.2.1. Serin Proteazlar

Serin proteazlar, aktif bölgelerinde serin içermeleri ile karakterize olurlar. Serin proteazlar substrat tercihlerine göre 3 grupta toplanır;

- tripsin benzeri serin proteazlar; pozitif yüklü aminoasitten sonraki peptid bağıni hidrolizlerler.
- kimotripsin benzeri serin proteazlar; büyük hidrofobik aminoasitten sonraki peptid bağıni hidrolizlerler.
- elastaz benzeri serin proteazlar ise küçük hidrofobik aminoasitten sonraki peptid bağını hidrolizlemektedir (Rao ve ark. 1998).

Serin alkalin proteazlar, birçok bakteri, küf, maya ve mantar tarafından üretilirler. Parçalanacak bağın karboksil bölgesinde tirozin, fenilalanin veya lösin olan peptid bağıni hidrolizlerler. Alkalin proteazların optimum pH’sı 10.0 ve izoelektrik noktaları 9.0 civarındadır. Molekül ağırlıkları 15 ile 30 kDa arasında değişmektedir Serin alkalin proteazların Arthrobacter, Streptomyces ve Flavobacterium sp. gibi
bakteriler tarafından üretilmelerine rağmen Bacillus spp. en iyi bilinenleridir. Serin proteazlar, DFP (diizopropilflorofosfat) ve PMSF (fenilmetilsulfonilflorid) tarafından inhibe edilen enzimlerdir (Rao ve ark. 1998).

1.4.2.2. Aspartik Asit Proteazlar

1.4.2.3. Sistein / Tiyol Proteazlar

1.4.2.4. Metaloproteazlar

Metaloproteazlar, katalitik proteazların en çok çeşitlilik gösteren grubudur. Aktiviteleri için +2 değerlikli metal iyonlarına ihtiyaç duymaları ile karakterize edilirler.

Metaloproteazların yaklaşık otuz sınıf tanımlanmıştır. Bunların onyedisi yalnızca endopeptidazları onikisi yalnızca ekzopeptidazları içerirken bir sınıf hem endo hem de exopeptidaz içermektedir. İşlev spesifitelerine göre nötral, alkalin, Myxobacter I ve Myxobacter II olmak üzere dört gruba ayrılarlar.
Alkalin metaloproteazlar çok geniş bir spesifisite gösterirken nötral metaloproteazlar hidrofobik amino asit kalıntılarına spesifisite gösterirler. Myxobacter I ayrılan bağın her iki tarafındaki küçük amino asit kalıntılarına myxobacter II peptid bağının amino tarafındaki lizin kalıntılarına spesifik tır. Genellikle EDTA gibi şefat yapıcı ajanlar tarafından inhibe olurlar (Rao ve ark. 1998).

Bacillus stearothermophilus tarafından üretilen termolizin bir nötral metaloproteaz olup disülfit köprüleri olmaksızın tek bir peptittir ve molekül ağırlığı 34 kDa’ dur. 80°C’ de 1 saat yarılanma ömrüyle çok kararlı bir proteazdır. *Pseudomonas aeruginosa* ve *Serratia* türleri tarafından üretilen alkalin metaloproteazlar 48-60 kDa molekül ağırlığına sahiptirler ve pH 7-9 arasında aktiftirler. Matriks metaloproteazlar doku morfolojisi farklılaşması sırasında hücre dışi matriks degredasyonunda önemli bir rol oynarlar, kanser ve artrit gibi hastalıkların tedavisinde yararlı olabilirler (Rao ve ark. 1998).

1.5. Mikrobiyal Proteazlar

Hücrede birçok önemli fizyolojik görevler üstlenen proteazlar, tüm ökaryotik ve prokaryotik organizmalar için vazgeçilmez enzimlerdir. Proteazlar, proteinazlar veya peptidazlar organizmada sentezlenen proteinlerin kompozisyonunun, büyüklüğünün, biçiminin ve döngüsünün kontrolünde esansiyel olan enzimlerdir (Sevinç 2010).

Proteazlar, doğada bitkisel, hayvansal ve mikrobiyal kalıntıların dekompozisyonunda önemli rol oynamaktadır. Böylece besin döngüsünü ve ayrıca bitkilerin besinleri alabilmelerini sağlamaktadırlar (Kıran ve ark. 2006).

Proteazlar doğada yaygın olmalara rağmen, mikroplar bu enzimlerin tercih edilen kaynağı olarak hizmet ederler (Shankar ve ark. 2011). Mikrobiyal proteazlar en önemli hidrolitik enzimler arasındadır ve enzimolojinin gelişiminden beri yaygın bir şekilde çalışılmaktadır (Gupta et al. 2002).

Güncel dünyada proteazlara duyulan talep; mikrobiyal canlıların hızlı gelişiminden, düşük maliyetli üretiminden ve mikrobiyal canlıları genetik olarak modifiye ederek çeşitli endüstriyel uygulamalar için gerekli olan daha verimli enzimler üretebilen ve arzu edilen özelliklere sahip yüksek verimli şesliler üretmeyi kolaylaştırdıklarından dolayı mikrobiyal proteazlara karşı büyük bir ilgiye yol açmıştır (Shankar ve ark. 2011).
Günümüzde en çok kullanılan proteaz kaynağı, bakteri, fungus ve virüs orijinli olan mikrobiyel proteazlardır. Mikroorganizmaların biyoteknolojik uygulamalar için hemen hemen tüm özelliklerinin istenen yönde değiştirilebilmesi, bitki ve hayvansal proteazlara göre daha saf elde edilebilmesi ve mikroorganizmaların uygun bir kültür ortamında üretilebilmesi mümkün olduğundan mikrobiyel kaynaklı proteazlar bitki ve hayvan kaynaklı proteazlara göre daha çok tercih edilmektedirler (Kiran ve ark. 2006).

Mikrobiyel proteazlar genelde ekstraselüllerdir ve üretici tarafından direkt olarak fermentasyon ortamına salgılanırlar, böylece enzimizin sonraki işlemi hayvansal ve bitkisel kaynaklı proteazlara göre kolaylaşır (Rao ve ark. 1998).

Bakteriyal proteazlar; genellikle ekstraselüler, kolaylıkla büyük miktarlarda üretilen, termostabil ve yüksek pH aralıklarında da aktif olan enzimlerdir. Bu özellikleri bakteriyal proteazları daha geniş endüstriyel uygulamalar için elverişli yapar (Banik ve Prakash 2004). Bu nedenle özellikle Bacillus türlerinden elde edilen mikrobiyel proteazlar, deterjan formulasyonlarındaki büyük uygulamalarıyla en çok kullanılan endüstriyel enzimlerdir (Beg ve Gupta 2003, Haddar ve ark. 2010).

1.6. Bacillus Cinsi

Bacillus cinsi, Bacillaceae familyasına dahil olup, gram pozitif (bazı türleri değişken), aerobik veya fakultatif anaerobik, spor oluşturan, çubuk şeklinde bakterilerdir (Kalkan ve Halkman 2006). Aerobik ve fakultatif anaerobturlar. Çoğunda oksijen terminal elektron alıcısidir. Endospor oluştururlar. Vejetatif hücreler 0.5X1.2
μm ile 2.5X10 μm çapındadır. Bacillus cinsinin koloni morfolojisi çeşitlilik gösterir. Geneli beyaz veya krem renkli kolonilerde sahiptir (Kalaylı ve Beyatlı 2003).

Bacillus’ların termofilik, mezofilik ve psikrofilik türleri bulunur. Çok yüksek sıcaklıklık derecelerinde bile canlı kalırlar. Genellikle 35-37 ºC da ve pH 7 civarında ürерer (Kalaylı ve Beyatlı 2003).

Bacillus’ lari bazı türleri güçlü proteolitik özellik gösterir, buna karşın bazı türleri ya zayıf proteolitik özellik gösterir veya hiç göstermez. Aktif proteolitik türler genellikle ekstilmeden pihtıtırları süt ürünlerinde kullanılır. Bacillus cereus bu özelliği gösteren bir türdür. Bacillus türleri arasında lipolitik olan bakteriler de bulunmaktadır.

Bacillus türleri çeşitli kompleks substratlara karşı aktivite gösteren çok sayıda ve çeşitli hidrolitik enzimler üretmektede ve salgılamaktadırlar. Bu nedenle Bacillus cinsindeki organizmalar, endüstriyel alanda α-amilaz, proteaz, glukanaz, glukoz izomeraz ve endonükleaz gibi enzimlerin üretiminde yaygın şekilde kullanılmaktadırlar (Uhlig 1998).
1.6.1. *Bacillus cereus*

Bacillaceae familyasının *Bacillus* cinsine ait bir bakteri olan *B. cereus*, toprak ve bitki örtüsü üzerinde yaygın bir şekilde bulunmaktadır (Kalkan ve Halkman 2006).

Özellikle *B. cereus* ile kontamine olmuş gıdalar pişirildikten sonra yeterince ve hızlı soğutulmadıklarında veya gıdaların hazırlanması ile tüketimi arasındaki süre uzadığında, canlı ve ısıya dirençli olan sporların çimlenmesi sonucu mikroorganizma coğalıp, gıda zehirlenmesine neden olabilecek toksin oluşturabilir. Gıda zehirlenmeleri, gıdadaki bakteri sayısı 10⁶/g olduğunda ortaya çıkmaktadır (Kalkan ve Halkman 2006).

B. cereus zehirlenmesinde aracı gıdalar olarak, pişmiş pirinç, makarna, et, kümes hayvanları, sebze yemekleri, çesitli çorba, pudingler, baharat ve soslar sayılabilir. Ayrıca, toprak kökenli olması nedeniyle tarla ve bahçe ürünlerine rahatlıkla bulaşabilen *B. cereus*, sporlu bir bakteri olduğu için et ve süt ürünlerinde de bulunabilir (Kalkan ve Halkman 2006).

B. cereus, insan patojeni olmak yanında salgılanışı proteaz enzimi ile özellikle UHT sütlerde sorun çikan bir bakteridir (Kalkan ve Halkman 2006).

Çizelge 1.2. *Bacillus cereus*’un taksonomik yeri

- Bacteria
- Firmicutes
- Bacilli
- Bacillales
- Bacillaceae
- Bacillus
- *Bacillus cereus*

1.7. Proteazların Endüstrideki Kullanım Alanları

Endüstriyel enzimlerin en önemli gruplarından biri olan proteazlar dünyadaki endüstriyel enzim marketinin %65’inden fazlasını oluşturmaktadır (Wang ve ark. 2009).

1. GİRİŞ

1.7.1. Deterjan Endüstrisinde Proteazlar

Dünya enzim üretiminin yaklaşık %30’ unu deterjan enzimi üretimi oluşturmaktadır (Horikoshi 1999).

Bir enzimin deterjan katkı maddesi olabilmesi için 2 özelliği olmasıdır: alkalin bir pH’ya sahip ve deterjanlarla uyumlu olmalıdır (Anwar ve Saleemuddin 1998).

Deterjanlara alkalen proteaz ilavesinin amacı protein kökenli lekeleri %35-40 uzaklaştırarak temizleme etkisini arttırmaktır. Bakterilerden özellikle yüksek sıcaklık ve pH’larda büyük bir Bacillus türü tarafından üretilen proteaz enzimleri, deterjanlara katkı maddesi olarak eklenmekte sıcak su ile daha etkin temizlik sağlayacak yıkama olanağını vermektedir. Biyoteknolojide uygulama olanağı bulacağı düşünceyi termofilik enzimlere olan ilgiyi arttırmuştur. Dolayısıyla tekstil ve deterjan endüstrisinde özellikle termofilik ve alkalofilik mikroorganizmaların ürettiği amilaz ve proteaz üreticisi
Bacillus türlerinin taranmasına, izolasyon ve nitelendirmesine yönelik çalışmalar yoğunlaşmıştır (Çelik 2006).

Diğer taraftan günümüzde deterjan endüstrisi, yıkama sıcaklığının düşürülmesi ve deterjan kompozisyonunun değişmesi yönünde çalışmalar yapmaktadır, fosfat tabanlı deterjanları uzaklaştırarak, deterjan uygulamaları için daha uygun yeni alkali proteazlar üzerinde durmaktadır (Kıran ve ark. 2006).

1.7.2. Deri Endüstrisinde Proteazlar

Bakteriyel proteazlar, derinin kollajen olmayan yapılarını seçimi hidrolizinde, globulinler ve albuminler gibi fibril yapıda olmayan proteinlerin uzaklaştırılmasında, deridenkilların ayırmamasında ve derinin yumuşatılmasında kullanılmaktadır.
1. Giriş

Günümüzde deri prosesi; ıslatma, sepileme, kireçlik, kireç giderme, sama ve kıl giderme gibi bazı adımlar içerir. Ancak bu işlemler boyunca yüksek oranda kimyasal madde ve atık su ortaya çıkmaktadır. Son yıllarda, ham derilerdeki doğal yağın giderilmesinde enzimlerden yaralanılan işlem etkinliğinin artırılması ve yağ gidermede kullanılan kimyasal maddelerin azaltılarak deri sanayinin çevreyi daha az kirletmesi amaçlanmıştır (Sevinç 2010).

Deri endüstrisinin farklı aşamalarında farklı proteaz çeşidi kullanılmaktadır. Deri ıslatma aşamasında nötral proteazlar, deri kıllardan arındırma aşamasında alken proteazlar ve deri yıkama aşamasında da asit proteazlar kullanılar (Nilegaonkar ve ark. 2007).

Deri işleme sürecinin farklı aşamalarında özellikle de derinin kıllardan arındırılması aşamasında zararlı kimyasalların yerine enzimlerin kullanımı, çevre kirliğini %80-90 azaltmaktadır. Geleneksel kimyasal metotlarla karşılaştırdığında enzimatik prosesler sadece zararlı ve çevreyi kirleten kimyasalların kullanımını azaltmakla kalmaz aynı zamanda yüksek verimli kaliteli ürünler oluşturur (Huang ve ark. 2003).

Proteazlar, hayvan postlarını deriye dönüştürmede ıslatma, kireçleme, kılldan arındırma, yünden arındırma ve ayırma aşamalarında sıkıla kullanılmaktak ve yapılan araştırmalara göre kimyasal maddelere göre daha yüksek aktivite göstermektedir. Geleneksel same işlemi, deri üretim proseslerinden kireç giderme işlemi sonrasında alkali proteazların kullanımı ile gerçekleştirilmiştir. Ham deri yapısında bulunan globüler proteinler parçalanmakta ve strüktür açılamaktadır (Sevinç 2010).

1.7.3. Gıda Endüstrisinde Proteazlar

Fırın hamurlarının özelliklerini belirleyen gluten olarak adlandırılan suda çözünmeyen bir protein içerir. Aspergillus oryzae’den elde edilen endo ve exoproteinazlar sınırlı proteoliz ile buğday gluteni modifiye etmek için kullanılmıştır. Fungal proteazlar beyaz ekmek ve poğaçaların yapımında da başarılı bir şekilde kullanılmaktadır. Fungal proteazların aşırı miktarları, ekmeği hamurumsu bir hale
getirir. Enzim ilavesi özellikle sert hamurlar ve elastik hamurlar için yuğundur. Hamurun enzimatik muamelesi onun elle ve makine ile üretimini kolaylaştırır ve ürünlerin daha geniş bir aralıktaki üretimine izin verir.

Yüksek içerikte iyi kaliteli protein içerdikleri dolayısıyla soya fasulyeleri zengin bir besin kaynağı olarak yüzyıllardır kullanılmaktadır. Proteazlar birçok soya ürünü ve soya sosu hazırlamak için kullanılmaktadır (Çelik 2006).

Gıda endüstrisinde en fazla kullanılan proteaz enzimi ise papaindir. En önemli iki uygulama alanı, biri nın soğukta saklanması ve yapay olarak etin gevrekleştirilmesi ve etin gevrekleştirilmesinde karşılaşılan başlica problem, enzimin ette dağılımının, et parçalanmaksızın sağlanmasındaki güçlüktür. Enzim bir veya birden fazla kas doku bileşenini parçaladığı için, enzimin düşük konsantrasyonlarda kullanılmasına özellikle dikkat edilmesi gerekmektedir (Fadıloğlu ve Erkmen 2004).

Proteolitik enzimler yağ elde edilmesinde de uygulama alanına sahiptirler. Örneğin Nijerya kavun çekirdeğinden yağ eldesinde proteolitik enzimler kullanılmaktadır. Kavun çekirdeği %30 yağ, %50 protein içermekte ancak yağın tamamı bilinen çözgenlerle ekstrakte edilememektedir. Çekirdekler proteolitik enzimlerin uygulanması ile ekstrakte olabilecek yağ miktarı artırılmaktadır. Ayrıca proteazlar meyve sularını, alkolsüz içkileri kuvvetlendirmede ve proteince zengin diyet amaçlı yiyeciklerin üretiminde kullanılmaktadır (Çelik 2006).

1.7.4. Tekstil Endüstrisinde Proteazlar

esaslı mamüllere papain, pronaz ve pepsin ile müdahale edilerek liflerin esnekliği sağlanmış, doğal kirlerden arındırılmış ve daha beyaz bir renk elde edilmiştir. Bu işlemler proteolitik enzimlerle, kimyasal maddelere göre hem zamandan tasarruf ettirmiş hem de çok daha iyi sonuçlar vermiştir (Karmakar 1999).

1.7.5. Atık Artımı ve Dönüşümü Endüstrisinde Proteazlar

2. KAYNAK ÖZETLERİ

Kumar ve ark. (1999), alkalişilik Bacillus izolatına ait ekstraselüler 2 proteaz enzimini saflaştırıp karakterize etmişlerdir. Saflaştırılan enzimlerin (AP-1 ve AP-2) molekül ağırlıklarını SDS-PAGE ile sırasıyla 28 ve 29 kDa olarak belirlemişlerdir. AP-1 ve AP-2’ in optimum pH ve sıcaklıklarını sırasıyla 50 ve 55°C, pH 11 ve 12 olarak belirlemişlerdir. Enzimlerin 5 mM Ca⁺² varlığında ve yokluğunda pH 6.0–12.0 aralığında ve 50°C’ ye kadar stabil olduğunu belirtmişlerdir. AP-1 ve AP-2’in yarı ömürlerinin 50°C’ de sırasıyla 50 ve 40 dk olduğunu belirtmişlerdir. PMSF’ nin enzimleri ile inhibe etmesi enzimlerin alkalin serin proteaz olduğunu belirtmişlerdir.

Mabrouk ve ark. (1999), Bacillus licheniformis ATCC 21415’ e ait alkalin proteaz üretiminin optimizasyonunu gerçekleştirmiştir. Karbon kaynağı olarak %4 laktoz ve %1.5 glukoz karışımlını kullanarak alkalin proteazın en yüksek veriminin elde edildiğini belirlemişlerdir. %6 soya fasulyesi ve %1.2 amonyum fosfat karışımının da en iyi azot kaynağı olduğunu belirlemiştir. Besi yerine %0.07 CaCl₂’ nin eklenmesi enzim üretimi artırdığını belirtmişlerdir. Besi yerine surfaktan olarak %1 mısır yağının eklenmesi aktivitede dikkat çektiğini belirtmişlerdir. Enzim 50°C’ de 15 dk stabil olduğunu ve 1 saat sonra aktivitesinin %48.8’ in inhibe ettiğini belirtmişlerdir. Polifosfatın enzim aktivitesini zayıf bir şekilde inhibe ettiği (%3) , EDTA’ nın ise aktivitede %22’ lik bir kayba neden olduğunu belirtmişlerdir.

Towatana ve ark. (1999), termal bir kaynağı toprak örneğinden izole edilen alkalişilik ve termofilik Bacillus sp. PS719’ a ait ekstraselüler alkalin proteazın saflaştırılması ve karakterizasyonu gerçekleştirmiştir. Saflaştırılan enzimin denatüre ve nondenatüre jel elektroforezinde 42 kDa hızaşında bir tek bant oluşturmaktadır. Elektroforez sonucuna dayanarak saflaştırılan enzimin bir polipeptid zincirden oluştuğunu rapor etmişlerdir. Enzimin izoelektrik noktası yaklaşı 4.8 olduğu belirtilmiştir. Enzimin optimum sıcaklık ve pH değerlerinin sırasıyla 75°C ve pH 9.0 olduğunu belirtmiştir. Enzim aktivitesinin Ca⁺² tarafından artırılırkı Fe⁺² ve Cu⁺² tarafından da inhibe edildiğini belirtmişlerdir. Ca⁺² varlığında enzimin pH 8.0–10.0 aralığında 80°C’ ye kadar stabil olduğunu belirtmişlerdir. Fenilmetilsulfonil florid (PMSF), 3,4-dikloroizokomarin (DCI) ve N-α-
p-tosil-L-lisin klorometil keton (TLCK) enzim aktivitesini tamamen inhibe ettiğiinden dolayı enzimin tripsin benzeri bir serin proteaz olabileceğini belirtmeleridir.

Yang ve ark. (2000), kuzey Tayvan’ı izole edilen Bacillus subtilis Y-108’ e ait proteaz enziminin kitinin hazırlanırken kabukların çöplerinin deproteinizasyonunda kullanılabileceğini rapor etmiştir. Bacillus subtilis Y-108’ e ait proteaz enzimini saflaştırılmışlardır. SDS-PAGE elektroforez ile enzimin molekül ağırlığını 44 kDa olarak belirlemişlerdir. Substrat olarak kazein kullanıldığında, pH 8.0 ve 50°C’ de enzimin daha aktif olduğunu belirtmişlerdir. Enzimin 5 mM Mn⁺², Zn⁺², Fe⁺², Mg⁺², ve Co⁺² iyonları ile aktivasyonu sağlanırken, Hg⁺² (3 mM) iyonunun ise enzimi tamamen inhibe ettiği rapor etmiştir. Enziminde EDTA, sülfhidril ajanı olarak β-merkaptoetanol ve sistein hidroklorid, histidin, gliserol gibi metal şelatlayıcı ajanlar ile inhibe olduğunu rapor etmiştir. Enzimi tamamen inhibe etmesi sebebiyle EDTA’nın en etkili inhibitör olduğunu belirtmişlerdir. Bu nedenle enzimin metal şelatörlerle duyarlı nötral proteaz olduğunu belirtmeleriştir.

Sookkheo ve ark. (2000), Bacillus stearothermophilus TLS33’ e ait S, N ve B diye adlandırılan 3 termostatıklı ekstraselüler proteazın saflaştırılması ve karakterizasyonunu gerçekleştirmeleridir. Enzimlerin molekül ağırlıklarını SDS-PAGE ve zimogram analizi ile sırasıyla 36, 53 ve 71 kDa olarak belirlemişlerdir. Proteazların (S, N ve B) optimum pH değerlerinin sırasıyla 8.5, 7.5 ve 7.0 olduğunu belirtmişlerdir. Proteazların (S, N ve B) optimum sıcaklık değerlerinin sırasıyla 70, 85, 90°C olduğunu belirtmişlerdir. Proteazlar (S, N ve B) 5 mM CaCl₂ varlığında sırasıyla 72, 78 ve 90°C’ de aktivitelerinin yarısını koruduğunu belirtmişlerdir. Bütün termostatıklı proteaz enzimlerinin metal şelatör olan EDTA ve 1,10-fenantrolin ile güçlü bir şekilde inhibe olduğunu ve proteolitik aktiviteleri ZnCl₂ eklenecek ile yeniden oluşturulduğunu ve 3 proteazın da metaloproteaz olarak sınıflandırılabilmesini belirtmeleriştir.

Kim ve ark. (2001), Bacillus cereus KCTC 3674’ e ait yeni bir ekstraselüler proteaz enziminin saflaştırılması ve karakterizasyonunu gerçekleştirmeleridir. Bacillus cereus KCTC 3674’ ün kültür ortamına birkaç çeşit proteaz salgıladığını belirtmiştir. Bacillus cereus KCTC 3674’ ün kültür ortamına birkaç çeşit proteaz salgıladığını belirtmişlerdir. SDS-PAGE ile enzimlerin molekül ağırlıklarını yaklaşık olarak 36 kDa ve 38 kDa olduğunu belirtmişlerdir. 38 kDa’ luk proteaz 37°C’ de ve 36 kDa’ lık proteaz ise 20°C’ de kültüre alınarak enzimlerin karakterizasyonunun yapıldığını belirtmişlerdir. 38 kDa’
luk proteaz ekstraselüler bir nötral (metalo-) proteaz olarak tanımlanmış ve karakterize etmişlerdir. 36 kDa’ luk proteazın N-terminal aminoasit dizisine, EDTA ve o-fenantrolin ile güçlü bir şekilde inhibe olmasına ve kanlı agardaki (37°C, 10 h) hemolitik aktivitesine dayanarak bir metaloproteaz olduğunu belirtmişlerdir. 36 kDa ve 38 kDa’ luk proteazların optimum pH ve sıcaklıklarını sırasıyla 6.5, 8.0 ve 45°C, 70°C olarak belirlemişlerdir.

Ghorbel ve ark. (2003), balık endüstrisinin atık suyundan izole edilen Bacillus cereus’ tan organik çözücülerde stabil olan proteaz enzimi üzerine çalışmaları yapmıştır. %25 metanol, DMSO, acetonitril ve DME varlığında, 24 saat 30°C’de pre-inkübasyondan sonra enzim aktivitesinin %95’inden fazlasını koruduğu ve 37°C’ in üzerinde enzim aktivitesi için Ca²⁺ iyonunun gerekli olduğunu belirtmişlerdir. Proteaz aktivitesi için optimum sıcaklık 2 mM Ca²⁺ iyonu varlığında 60°C ve Ca²⁺ iyonunun yokluğunda ise 50°C olduğunu belirlemişlerdir. 60°C’ de 2 mM Ca²⁺ iyonu varlığında proteaz aktivitesinin %500 stimule edildiğini belirlemişlerdir. Zn²⁺ ve Cu²⁺ iyonları güçlü bir inhibitör etki gösterirken, Mg²⁺ ve Mn²⁺ gibi diğer bivalent metal iyonlarının aktiviteyi sırasıyla %285 ve %157 olarak artırığı belirlemişlerdir. Enzimin termostabilitesinin 40°C’ in üzerindeki sıcaklıklarında Ca²⁺ iyonu ile artırıldığı belirlemişlerdir. 10 mM Ca²⁺ iyonu varlığında enzim 15 dk 55, 60, 70°C’ de ısıtıldıktan sonra sırasıyla aktivitesinin %100, 93 ve 26’sını koruduğu belirlemişlerdir. Kalsiyumun yokluğunda enzim 55°C’ de 15 dk inkübe edildiğinde enzimin aktivitesini tamamen kaybettiğini belirlemişlerdir. Enzimin optimum pH’sının 8.0 olduğunu ve enzim 50°C’ de 1 ve 3 saat inkübe edildiğinde enzimin pH 6.0–9.0 aralığında stabil olduğunu belirlemişlerdir. Enzim aktivitesinin EDTA ile inhibe edilmesi enzimin metaloproteaz(lar) içerdiğini desteklediği belirlemişlerdir.

Adinarayana ve ark. (2003), yeni izole edilen Bacillus subtilis PE-11’ e ait termostatıl serin alkalin proteazın saflaştırılması ve kısmi karakterizasyonunun gerçekleştirilmiştir. Enzimi amonyum sülfat çöktürmesi ve Sefadeks G-200 jel geçirgenlik kromatografisinden oluşan 2 aşamalı prosedür kullanarak saflaştırılmışlardır. SDS-PAGE ile enzimin 15 kDa’ luk düşük bir bağlı molekül ağırlığa sahip olduğunu belirlemişlerdir. Enzimi %7.5 verimle 21 kat saflaştırılmışlardır. Substrat olarak kazein kullanarak enzimin 60°C ve pH 10’ da maksimum aktivite gösterdiğini ve enzimin pH 8 – 10 aralığında stabil olduğunu belirlemişlerdir. Enzim 60°C’ de 350 dk inkübasyonu
sonra bile %100 stabil olduğunu belirtmişlerdir. Enzimin Ca^{2+}, Mg^{2+} ve Mn^{2+} gibi metal iyonları ile güçlü bir şekilde aktifleştğini belirtmişlerdir. Enzim aktivitesinde iodoasetat, p-kloromercurik benzoat (pCMB) ve β-merkaptoetanol (β-ME) ile zayıf inhibisyon gözlenirken, fenilisotesiumil fluoride (PMSF) ve diizopropil fluoro fosfatlar ile güçlü inhibisyon olduğunu fakat EDTA ile inhibisyonun olmadığını belirtmişlerdir. 10 mM CaCl_2 ve 1 M Glisin’ in varlığında enzimin ticari ve lokal deterjanlarla uygunluğunu çalışmışlardır. Çalışılan bu enzimin çeşitli deterjanların temizlik gücünü geliştirdiğini belirtmişlerdir. 10 mM CaCl_2 ve 1 M Glisin’ in varlığında enzim deterjanlar ile kullanıldığında kan lekelerini tamamen ortadan kaldırdığını belirtmişlerdir.

Beg ve ark. (2003), SDS-PAGE ile molekül ağırlığı 30 kDa olarak belirlenen *Bacillus mojavensis*’ den ekstraselüler tiyole bağlı ve oksidasyona karşı stabil olan alcalin serin proteazı, anyon değişim kromatografisinden elde edilen fraksiyonları önceden pH 10.5 tampon ile dengelenen Q-sefaroz kolonunun hızlıca geçirilerek %37’den daha fazla veri 17 kat saflaştırılmışlardır. Enzimin optimum sıcaklık ve pH değerlerinin sırasıyla 60°C ve 10.5 olduğunu ve geniş bir pH aralığında (7.0–11.5) 48 saat stabil olduğunu belirtmişlerdir. Çeşitli stabilizatör ve katkı maddelerinin proteazı 60°C’ de 4 saat fazla ve 65°C’ de 45 dk stabilize ettiği rapor etmişlerdir. 2-merkaptoetanol, glutatyon ve dithiothreitol (DTT)’ in enzim aktivitesini 2 kattan daha fazla arttırırken, PMSF, bestatin, iyodoasetik asit, N-bromosüksinimid gibi spesifik proteaz inhibitörlerinin enzim aktivitesini tamamen inhibe etmesi enzimin tiyole bağlı bir serin proteaz olduğunu desteklediğini belirtmişlerdir. Metal iyonları arasında Cu^{2+} ve Mn^{2+} iyonlarının enzim aktivitesini %36 artırdığını belirtmişlerdir. Enzimin ticari olarak kullanılan birçok laboratuvar beyazlaticılarına (H_2O_2, sodyum perborat), surfaktanlara (Tween’ler, Triton X-100, sodyum şelat) ve çamaşır endüstrisinde kullanılan diğer ticari deterjanlara karşı stabil olduğu belirlemişlerdir. Jelatin, elastin, albumin, hemoglobin ve skim milk (süt tozu) gibi bir çok protein kaynaklı doğal substratları hidroliz etmesi proteazın etkili bir deterjan katkı maddesi olarak kullanılabileceğini desteklediğini belirtmişlerdir. Yıkama performans analizine dayanarak enzimin 60°C’ de kan ve çırm lekesi gibi çeşitli lekeleri en etkili şekilde ortadan kaldırmabiliğini belirtmişlerdir.
Nazenin AHMETOĞLU

Nascimento ve ark. (2004), termofilik Bacillus sp. SMIA-2 suşuna ait ekstraselüler proteaz enziminin özellikleri ve üretime üzerine çalışmalar yapmışlardır. Termofilik Bacillus sp. SMIA-2 tarafından üretilen ekstraselüler proteaz enziminin üretime trisodyum sitrat içeren sıvı kültür ortamında 9 saatte maksimum üretime ulaştığını belirlemişlerdir. Mikroorganizmanın proteaz üretime için kullandığı birçok karbon kaynağı arasında en iyi karbon kaynağı olarak nişastayı, nişastayı takiben trisodyum sitrat, sitrik asit ve sükrozu kullandığını belirlemişlerdir. Organik ve inorganik azot kaynakları arasında en iyi azot kaynağı olan amonyum nitrat olduğunu belirlemişlerdir. Enzimin optimum sıcaklık ve pH değerlerinin sırasıyla 60°C ve pH 8.0 olduğunu belirtmişlerdir. Enzimin 40°C ve 80°C’ de orijinal aktivitesinin sırayla %14 ve %84’ünü kaybettigini belirlemişlerdir. Ham enzim solüsyonunun pH 5.5, 8.0 ve 9.0’ da 24 saat inkübasyonundan sonra enzimin orijinal aktivitesinde sırayla yaklaşık %51, %18 ve %66’lık bir azalma olduğunu belirlemişlerdir. K^+, Hg^{2+} ve Cu^{2+} iyonlarının varlığında güçlü bir inhibitör etki gözelemlemişlerdir. 1 mM Hg^{2+} konsantrasyonunda enzim aktivitesinin tamamının kaybolduğunu gözlemlemişlerdir. Mn^{2+} ve Ca^{2+} iyonları enzim aktiviteyi stimüle ettiği ve bu iyonların enzim molekül yapısında fonsiyonel bir role sahip olduğunu belirtmişlerdir.

Frikha ve ark. (2005), B.cereus BG1 tarafından üretilen kalsiyuma bağlı proteaz enziminin üretime ve saflaştırılmasına üzerine çalışmalar yapmışlardır. Proteazın üretime özellikleкультур ortamındaki kalsiyumun konsantrasyonuna bağlı olduğunu belirtmişlerdir. Kalsiyumun proteaz üretimeini ve/ veya enzim sentezinden sonra stabilizasyonu indüklediğini belirtmişlerdir. Proteaz üretime optimizasyonu için en iyi karbon ve azot kaynağı olarak sırasıyla nişasta(%0.5) ve maya özütünü (%0.2) kullanılmışlardır. Diğer metal iyonları proteaz üretime indükleyemediği için kalsiyum ihtiyacının son derece spesifik olduğunu belirtmişlerdir. B.cereus BG1 suşuna ait proteaz enzimini ultrafiltrasyon, sıcaklık uygulaması, sefaril S-200 jel filtrasyonu, DEAE–selüloz iyon değişim kromatografisi ve son olarak ikinci bir sefaril S-200 jel filtrasyonu ile spesifik aktivitesinde 39 kat artış ve %23 verimle saflaştırılmışlardır. SDS-PAGE analizide enzimin molekül ağırlığının 34 kDa olabileceği bulunmuştur. 100 mM Tris-HCl tamponu ve 2mM CaCl₂ varlığında enzimin optimum sıcaklık ve pH değerlerinin sırasıyla 60°C ve pH 8.0 olduğunu belirtmişlerdir.

Gençkal ve ark. (2006), ekstrem alkaline koşullardan izole edilen ve yüksek proteaz aktivitesi gösteren Bacillus sp. tarafından üretilen alkaline proteaz enzminin üretimi üzerine çalışmalar yapmışlardır. İzole edilen 85 izolatın arasında I18, L18 ve L21 olarak kodlanan Bacillus suşları yüksek alkaline proteaz potansiyeli gösterdiği gözlemlemişlerdir. Optimum sıcaklıklar I18 suşu için 30ºC, L18 ve L21 suşları için 37ºC olarak belirlemişlerdir. Her 3 suş için inokulum oranını ve inkübasyon süresini sırasıyla %5 (w/v) ve 96 saat olarak belirlemişlerdir. En yüksek spesifik proteaz aktivitesi (60 U/mg protein) ve daha geniş bir pH aralığı gösterdiği için çalışmamın devamında Bacillus sp L21 suşunun seçildiğini belirtmişlerdir. Bacillus sp L21 suşunun ham enziminin; çamaşır suyuunda stabil, optimum sıcaklık ve pH’ sırayla 60ºC ve pH 11 olması dayanarak serin alkaline proteaz olduğunu belirtmişlerdir. Enzimin deterjan endüstrisindeki uygulamalar için potansiyel bir aday olabileceğini belirtmişlerdir.

Setyorni ve ark. (2006), mayalanmış balık ezmesinden izole edilen Bacillus subtilis FP-133 tarafından üretilen ve %0-20 NaCl konsantrasyonunda aktivite gösteren
ve stabil olan halotolerant iki yeni ekstraselüler proteazın (exopro-I ve exopro-II) saflaştırılması ve karakterizasyonunu gerçekleştirmişlerdir. Saflaştırılan exopro-I’ in optimum pH’sı 7.5 olduğu için alkalin olmayan serin proteaz olduğunu belirtmişlerdir. Exopro-I’ in molekül ağırlığının 29 kDa olduğu belirtmişlerdir. Molekül ağırlığı 34 kDa olan exopro-II’ in bir metaloproteaz olduğunu belirtmişlerdir. Exopro-II enziminin, daha önce hiç bakteriyal proteaz aktivatörü olarak rapor edilmeyen Fe⁺² iyonu ile aktifleştiğini belirtmişlerdir. %7.5 NaCl konsantrasyonunda her iki proteazın da doğal substrat olarak bitkisel proteinlere hayvansal proteinleri tercih ettiğini belirtmişlerdir. Tuzlu koşullarda exopro-I ve II enzimlerinin sırasıyla jelatin ve kazeine karşı yüksek katalitik aktivite gösterdiğini belirtmişlerdir.

Sousa ve ark. (2007), karbon ve azot kaynağı olarak yünü kullanan Bacillus cereus’ a ait proteazı saflaştırmışlardır. Molekül ağırlığı 45.6 kDa olan Bacillus cereus’a ait proteazın nötral bir metaloproteaz olduğunu belirtmişlerdir. Enzimin optimum sıcaklık ve pH değerlerinin sırasıyla 45°C ve pH 7.0 olduğunu belirlemişlerdir. Aktivitenin EDTA ile %100 inhibe olması enzimin bir metaloproteaz olduğunu belirlemiştir. Enzimin optimal aktivitesini gösterebillesi için Ca⁺² iyonuna ihtiyaç duydüğunu belirtmişlerdir. Saflaştırılan enzimin azokazein, azocoll, keratin azure ve yün gibi protein substratlarını hidrolizlediğini belirtmişlerdir.

Joshi ve ark. (2007), temiz bir su gölünden izole edilen gram pozitif Bacillus cereus MTCC 6840’ a ait ekstraselüler alakalı proteaz enziminin üretimi üzerine çalışmalar yapmışlardır. Bakteri 25°C ve pH 9.0’ da 24 saat ürediğinde maksimum miktarında enzim ürettiğini belirlemişlerdir. Çeşitli substratların kullanıldığını, karbon kaynağı olarak fruktozun, azot kaynağı olarak ta maya özütü ve peptonun kombinasyonunun maksimum enzim üretmini (120 U/ml) sağladığı belirlemiştir. Ca⁺², Cu⁺², K⁺, Mg⁺² ve Mn⁺² iyonları enzim aktivitesini inhibe ederken, Fe⁺² ve Co⁺² iyonlarınının da stimül ettiğini belirlemişlerdir. Enzimin NaCl, SDS ve aseton’un varlığında büyük ölçüde stabil olduğunu belirlemiştir. EDTA ve PMSF’in enzim aktivitesinde önemli kayıbası neden olduğu belirlemiştir. Enzimin optimum sıcaklık ve pH değerlerinin sırasıyla 20°C ve pH 9.0 olduğunu belirlemiştir.

Nilegaonkar ve ark. (2007), bizon (kara sığır) postundan izole edilen Bacillus cereus MCM B-326’ in ekstraselüler olarak ürettiği proteaz enziminin kısmi

Ghosh ve ark. (2008), sulak bir alan olan Doğu Calcutta bölgesinde mikrobiyel çeşitliliğe dayanan fonksiyonel bir tarama sırasında izole edilen *Bacillus cereus* DCUW suşu tarafından üretilen ve yüksek bir molekül ağırlığı sahibi olan ekstraselüler proteaz enziminin saflaştırılması ve karakterizasyonunu gerçekleştirmişlerdir. Yapılan çalışmalarla enzimin tıbbi atıkların parçalanmasında kullanıldığını ispatlamışlardır. Tıbbi hidrolizi sırasında parçalanan ürünlerin kullanımı ilerlemiştir. Saflaştırılan keratinolitik proteazın optimum sıcaklık ve pH değerlerini sırasıyla 8.5 ve 50°C olduğunu belirtmişlerdir. PMSF’ nin enzimi tamamen inhibe ettiği bulunmuşlardır. SDS-PAGE analizi ile saflaştırılan enzimin molekül ağırlığını 80 kDa olarak belirlemişlerdir. Proteazın keratin, kazein, kollojen, BAPNA ve jelatini içeren geniş bir substrat spesifiyeti gösterdiğini belirtmişlerdir.

Wang ve ark. (2009), *Bacillus cereus* TKU006 tarafından üretilen kitinaz ve proteaz enzimlerinin saflaştırılması ve karakterizasyonunu gerçekleştirmişlerdir. Yapılan çalışmalar sonucunda bakterinin 2 gün 25°C’de % 2 karides kabuğunu içeren 25 ml besi yerinde en iyi proteaz ve kitinaz üretimini gerçekleştirdiğini belirlemişlerdir. SDS-PAGE ile TKU006’a ait proteaz ve kitinazın molekül ağırlıklarının yaklaşık 39 ve 35 kDa olduğunu belirmişlerdir. TKU006’ a ait proteazın optimum pH, optimum sıcaklık, pH stabilite ve termal stabilitelerini sırayla 9, 50°C, 3-11 ve 50°C olduğunu belirtmişlerdir. TKU006’a ait kitinazın optimum pH, optimum sıcaklık, pH stabilite ve termal stabilitelerini sırayla 5, 40°C, 3-11 ve 60°C olduğunu belirtmişlerdir. TKU006’ a ait proteaz aktivitesi EDTA tarafından tamamen inhibe edildiği için enzimin bir metaloproteaz olduğunu belirtmişlerdir. TKU006’a ait proteazın %2 Tween-20, Tween-40 ve Triton X-100 ve 1 mM SDS varlığında sırayla aktivitesinin %61, %60, %73 ve %100’unu koruduğunun belirtmişlerdir. TKU006’a ait kitinazın %2 Tween-20, Tween-40 ve Triton X-100 ve 1 mM SDS varlığında sırayla aktivitesinin %60, %60, %71 ve
%96’sını koruduğunu belirtmişlerdir. Sonuç olarak; TKU006’a ait proteaz ve kitinazın pH ve surfaktanlara karşı yüksek stabilite gösterdiğini belirtmişlerdir. Yüksek katma değerli bir ürün üretmek için denizcilik atıklarının kullanılabilmesini ve fonksiyonel gıdaların üretimindeki gizli potansiyelinin ortaya çıkardığını belirlemişlerdir.

Doddapaneni ve ark. (2009), mezbaha atık örneklerinden izole edilen B.cereus’tan proteaz enziminin saflaştırılması ve karakterizasyonunu gerçekleştirmiştirler. Enzim; amonyum sülfat çöktürmesi ve iyon değişim kromatografisi ile 1.8 kat saflaştırıldığı ve %49 verim elde edildiğini belirtmişlerdir. Enzimin bağıl molekül ağırlığını, optimum pH ve sıcaklık değerlerini sırasıyla 28 kDa, 10 ve 60°C olarak belirlemişlerdir. Enzim pH 7.0-12.0 aralığında stabil olduğu belirtilmiştir. Enzim aktivitesi, EDTA ile inhibe edilirken, aktivitenin Cu²⁺ iyonlarının varlığında (4 kat) artığını belirtmişlerdir. Aktivitenin Cu²⁺ iyonlarının varlığında artması, çalışılan proteaz enziminin metalloproteaz olduğunu göstermiştir. Enzimin; deterjanların, aniyonik surfaktanların ve organik çözücülerin varlığında bile stabilite ve aktivite gösterdiğini belirtilmişlerdir.

Almas ve ark. (2009), tabakhane atığından izole edilen Bacillus strain SAL1’den alkalin proteaz enziminin saflaştırılması ve karakterizasyonunu gerçekleştirmiştirler. Enzim, amonyum sülfat çöktürmesi, DEAE sefakril iyon değişim kromatografisi ve fenil sefaroz hidrofobik etkileşim kromatografisi kombinasyonu ile saflaştırılmıştır. Proteaz enzimi 11.8 kat saflaştırılmış ve enzimin spesifik aktivitesinin 4250 PU/mg olduğu belirtilmiştir. SDS-PAGE ile enzimin bağıl molekül ağırlığının 27 kDa olduğu belirlemişlerdir. Enzimin proteolitik aktivitesi jelatin zımogram jeli ile belirlenmiştir. Enzimin pH 7.0-10.0 aralığında stabil olduğunu ve 50°C’de 1 saat stablesitesini koruyabildiği belirtilmiştir.

Haddar ve ark. (2010), Bacillus mojavensis A21 tarafından üretilen ham proteazın karakterizasyonunu gerçekleştirmiştirler. Karakterize edilen proteazın tavuk tüylerinin hidrolizinde kullanılıp kullanılmayacağı araştırmalarlardır. Proteolitik aktivitenin optimum pH’sını ve optimum sıcaklığını sırasıyla 8-11 ve 60°C olarak belirlemişlerdir. Ham proteazın iyonik olmayan (%5 Tween 80 and %5 Triton X-100) ve aniyonik (%1 SDS) surfaktanlara karşı ve oksitleyici ajanlara karşı çok stabil olduğunu belirlemişlerdir. Enzimin 30°C’den 50°C’ye kadar çeşitli katı (7 mg/ml) ve

Deng ve ark. (2010), alcalifilik *Bacillus* sp. B001’ in üretim ortamında ekstraselüller olarak üretiliği yüksek bir proteolitik aktiviteye (34277 U/mL) sahip olan alkalen proteaz enziminin saflaştırılması ve karakterizasyonunu gerçekleştirmişlerdir. Çalışılan proteaz enziminin optimum pH’sının ve sıcaklığının sırasıyla 10.0 ve 60°C olması, surfaktanlara ve oksitleyici ajanlara karşı yüksek stabilite göstermesi bu yüksek alkalen proteazın çeşitli endüstriyel süreçler için potansiyel uygulamaları sahip olduğunu desteklediği belirtmiştir.

Shah ve ark. (2010), Süveyş Körfezinde ham petrol bulaşmış örneklerden izole ettikleri AK187 izolatının organik çözücü, deterjan ve oksitleyici ajanlara karşı toleranslı bir serin alkalen proteaz üretimi belirlemişlerdir ve serin alkalen proteaz enziminin saflaştırılması ve karakterizasyonunu gerçekleştirmişlerdir. 3 aşamalı saflaştırma basamağı ile proteaz enzimini 58 kat saflaştırmayı başarmışlardır. Enzimin optimum pH ve sıcaklığının sırasıyla 9.0 ve 60°C olarak belirlenmiştir. Cr³⁺, Hg⁺² ve Cu⁺² gibi ağır metaller enzimi inhibe ederken, Li⁺, Ba⁺², K⁺, Mg⁺² ve Mn⁺² iyonlarının ise aktiviteyi etkilemedikleri belirlemişlerdir. Enzimin, Triton X-100 ve Tween 80 gibi iyonik olmayan deterjanların ve hidrojen peroksit gibi oksitleyici ve beyazlatıcı ajanların varlığında stabil olduğunu belirlemişlerdir. Saflaştırılıp karakterize edilen proteaz enziminin deterjan formuyla savunulduğu, enzimatik peptid sentezinde, biotransformasyon reaksiyonlarında ve kirlenme karşıtı ajanların formuyla savunulduğu belirtmiştir.

Kumar ve ark. (2011), yeni izole edilen alkalifilik Bacillus altitudinis GVC11 tarafından üretilen serin alkalen proteazın saflaştırılması ve karakterizasyonunu gerçekleştirmişlerdir. Enzimi, aseton çöktürmesi ve DEAE-selüloz anyon değişim kromatografisi ile spesifik aktivede 7.3 kat artışla ve %15.25 verimle saflaştırmışlardır. Alkalin serin proteazın molekül ağırlığının SDS-PAGE ile 28 kDa olabileceğini ve aktivitesinin zimogram analiziyile de tayin edildiğini belirtmişlerdir. Enzimin optimum pH değerinin 9.5 olduğunu ve geniş bir pH aralığında (pH 8.5-12.5) yüksek oranda aktivite gösterdiğini belirtmişlerdir. Saflaştırılan enzimin optimum sıcaklığının 45°C olduğunu ve termal stabilitiesinin Ca$^{+2}$ iyonlarını tarafından artırıldığını belirlemişlerdir. Enzim aktivitesinin Ca$^{+2}$ ve Mg$^{+2}$ iyonları tarafından artırıldığını ve Hg$^{+2}$ iyonu tarafından da inhibe edildiğini belirlemişlerdir. Yapılan çalışmanın, Bacillus altitudinis GVC11 tarafından üretilen yüksek oranda alkalin proteaz üretimini ve proteazın 18
2. KAYNAK ÖZETLERİ

saatte kıl ve kollojen bütünlüğünü bozmadan keçi derisini kılardan arındırma yeteneğinin tanımlandığı ilk çalışma olduğunu belirtmişlerdir.
3. MATERYAL VE METOT

3.1. Materyal

Çalışmamızda biyolojik materyal olarak Bingöl Kös kaplıcasından izole edilen *Bacillus cereus* KG5 kullanıldı.

3.1.1. Kimyasal Maddeler

3.1.1.1. Besi Yeri Maddeleri

Nutrient Broth (NB) ve Agar Merck’ ten temin edilmiştir.

3.1.1.2. Azot Kaynakları

Yeast ekstrakt (maya özütü), beef ekstrakt (et özütü), üre, amonyum sülfat, amonyum klorür, sodyum nitrat ve tripton Merck’ ten; pepton Oxoid’ ten ve jelatin Difco’ dan temin edilmiştir.

3.1.1.3. Karbon Kaynakları

Maltoz, laktoz ve fruktoz Sigma’ dan, glukoz, gliserol ve sükroz Merck’ ten, galaktoz Difco’dan temin edilmiştir.

3.1.1.4. Kimyasal Maddeler, Deterjanlar ve Metaller

Sodyum Dodesil Sülfat (SDS) Merck’ ten, Triton X-100 Sigma’ dan, Tween-80 Merck’ ten ve Alo ticari olarak temin edilmiştir.

Kalsiyum klorür (CaCl₂), bakır klorür (CuCl₂) ve civa klorür (HgCl₂) Merck’ ten, mangan klorür (MnCl₂) Sigma’ dan, magnezyum klorür (MgCl₂) Kimetsan’ dan ve çinko klorür (ZnCl₂) Carlo Erba Reagent’ tan temin edilmiştir.

Etilen diamin tetra asetik asit (EDTA) Merck Darmstaddr’ dan, 1-10 Phenantroline Aldrich’ ten, Fenilmetilsulfonil florid (PMSF) Fluka Biochemica’ dan temin edilmiştir.

3.1.1.5. Elektroforetik Maddeler

Tris-Base [Tris(hydroxymetyl) amino methane], akrilamid, N-N-metilen bisakrilamid, TEMED (N-N-N’-N’-Tetrametilen diamin), APS (Amonyum...
3. MATERYAL VE METOT

persülfat), standart proteinler (ticari β-galaktozidaz, Fruktoz-fosfat, α-amilaz) ve Glisin Sigma Chemical Co., St. Louis’ den, Comassie Brillant Blue R-250 Rio-Rad’ dan, BFB (Brom Fenol Blue) ve Gliserol Merck Darmstad’ dan temin edildi.

3.1.2. Besi Yerleri

3.1.2.1. Katı Besi Yerleri

8 g Nutrient Broth besi yerine 15 g agar ilave edilip distile su ile 1000 ml’ ye tamamlanıp otoklavlandı.

3.1.2.2. Sıvı Besi Yerleri

Nutrient Broth (NB)

8 g NB ve distile su ile 1 litreye tamamlanıp otoklavlandı.

Bazal medium (BM) Besi Yeri

% 2 Çözünebilir Nişasta, % 0.2 Yeast Ekstrakt, %1 Beef Ekstrakt, % 0.02 CaCl₂, ve % 0.01 MgSO₄.7H₂O oranlarında tartılarak distile su ile çözünmeleri sağlanarak otoklavlandı.

Glukoz Pepton Medim (GPM) Besi Yeri

% 0.1 Glukoz, % 1 Pepton, % 0.02 Yeast Ekstrakt, % 0.01 MgSO₄, % 0.01 CaCl₂, % 0.05 K₂HPO₄ oranlarında tartılarak distile su ile çözünmeleri sağlanarak otoklavlandı.

3.1.3. Tamponlar

- 0.1 M Sodyum Fosfat tamponu pH: 6-6.5 hazırlantı.

- 0.1 M Tris-HCl tamponu pH: 7.0 - 9.0 hazırlantı.

- 0.1 M Glisin-NaOH tamponu pH: 9.0 - 11.0 hazırlantı.

3.1.4. Kullanılan Aletler

Steril Kabin (Telstar AV -100)

Spektrofotometre (Varian Cary UV-Visible Spectrophotometer)
3.2. METOT

3.2.1. Bakterilerin Kültüre Alınması

B. cereus KG5 NB ve BM sıvı besi yerlerinde kültüre alındı. 100 ml’lik erlenlerin içerisindeki 25 ml sıvı besi yerine, 250 µl bakteri inoküle edildi. İnkürbasyon 37°C çalkalamalı su banyosunda 120 rpm’de gerçekleştirildi. Bakteri peleti 10 000 rpm’de 10 dk. santrifüj edilerek uzaklaştırıldı. Üst sıvı (süpernatant) alındı. Elde edilen üst sıvı proteaz aktivite tayini için kullanıldı.

3.2.2. Proteaz Aktivite Tayini

Leington ve ark.’na (1973) göre yapılan proteaz aktivite tayininde 150 µl enzim solüsyonuna (süpernatant) 0.1 M Tris-HCl pH 7.0 tamponunda hazırlanan %0.5’lik azokazein çözeltisinden (çalışılan sıcaklıkta preinkürbasyon tutularak) 250 µl ilave edilerek 45°C’de 30 dakika su banyosunda inkürbasyon bırakıldı. İnkürbasyon süresi sonunda reaksiyon, 1 ml %10’lu Trikloroasetik asit solüsyonu (TCA) ilave edilerek durduruldu. 15 dakika buzluukta bekletildikten sonra +4°C’de 10 000 rpm’de santrifüj...
edildi. 500 μl 1.8 N NaOH solüsyonu üzerine 1 ml üst sıvı (süpernatant) ilave edilerek 420 nm’de spektrofotometrik olarak ölçüldü.

1 Ünite enzim, 1 μ mol azokazeini 1 dakikada aminoasitlerine parçalayan enzim miktarıdır.

3.2.3. Protein Miktar Tayini

Protein miktar tayini Lowry (1977) metoduna göre yapıldı. Standart eğrinin çizilebilmesi için konsantrasyonu bilinen 1 mg/ml Bovine Serum Albumin (BSA) hazırlanıdı. Tüplerle artan konsantrasyonlarda hazırlanan BSA solüsyonundan, 50 μl enzim solüsyonundan bırakılarak tüplerin hepsine 5 ml alkan çözeltisi eklendi. 15 dk. 40 ºC’de inkübasyona bırakıldı. İnkübasyondan sonra bütün tüpler 1:1 oranında seyreltilmiş 500 μl FCR ayırıcı (Folin-Ciocalteu reagent) eklediği ve 30 dk. karanlıkta beklekti. 660 nm’de spektrofotometrik ölçüm yapıldı.

Alkalin çözeltisinin hazırlanışı

- 100 ml % 4 sodyum karbonat (Na₂CO₃) hazırlanıdı.
- 10 ml % 4 oranında sodyum potasyum tartarat hazırlanıdı.
- 10 ml % 2 oranında bakır sülfat (CuSO₄.5H₂O) hazırlanıdı.

100 ml % 4 Na₂CO₃ içerisine 1’er ml Na-K tartarat ve CuSO₄.5H₂O eklenerek karıştırıcında karışmaları sağlandı. Alüminyum folyo ile sarılı balon joje içerisinde oda sıcaklığında saklandı.

Spesifik aktivite, bovine serum albumin (BSA) standart olarak kullanılarak Lowry yöntemi ile tespit edilen 1 mg protein başına düşen proteaz üniteleri olarak tanımlanmıştır.

3.2.4. Sıcaklığın Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması

3.2.5. pH’ın Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması

Proteaz enziminin aktivitesi üzerinde pH’ın etkisini belirlemek amacı ile 0.1 M sodyum fosfat (6.0-6.5), 0.1 M Tris-HCl (7.0-9.0) ve 0.1 M NaOH-Glisin (9.0-11.0) tamponlarında %0.5’lik azokazein solüsyonu hazırlanarak aktivite tayini yapıldı ve optimum pH değeri belirlendi.

3.2.6. Farklı Besi Yerlerinin Enzim Üretimi Üzerindeki Etkisinin Araştırılması

Farklı besi yerlerinin enzim üretimi üzerindeki etkisinin araştırılması amacı ile NB, BM ve GPM besi yerleri ayrı ayrı hazırlanarak 100 ml’lik erlenlerde bulunan 25 ml besiyerlerine 250 µl bakteri inoküle edilerek inkübasyon 37°C’de 120 rpm’de gerçekleştirildi. Besiyerlerinden 24. saatte örnek alındı. Alınan üst sıvılarla proteaz aktivite tayini yapılarak enzim üretiminin en iyi olduğu besi yeri belirlendi.

3.2.7. Değişik İnkübasyon Sürelerinin Enzim Üretimi Üzerindeki Etkisinin Araştırılması

Değişik inkübasyon sürelerinin enzim üretimi üzerindeki etkisinin araştırılması amacı ile 25 ml BM besi yeri içeren 100 ml’lik erlenlere 250 µl bakteri inoküle edilerek inkübasyon 37°C’de 120 rpm’ de gerçekleştirildi.

BM besi yerinden 3, 6, 12, 24, 36, 48, 60, 72, 84, 96 ve 108 saatlerinde üst sıvılar alınarak proteaz aktivite tayini ve protein miktar tayini yapıldı.

3.2.8. Farklı Azot Kaynaklarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması

Farklı azot kaynaklarının enzim üretimi üzerindeki etkisinin araştırılması amacı ile BM besi yerinden %0.2 yeast ekstrakt ve %1 beef ekstrakt çıkarılacak, %1.2 oranında yeast ekstrakt, beef ekstrakt, pepton, jelatin, üre, amonyum sülfat, amonyum klorür, sodyum nitrat ve tripton eklenerek otoklavlandı. Besi yerine bakteri inoküle edilerek inkübasyon 37°C’de 120 rpm’de gerçekleştirildi. İnkübasyon süresi sonunda alınan üst sıvılardan proteaz aktivite tayini ve protein miktar tayini yapıldı.
3. MATERİAL VE METOT

3.2.9. Farklı Yeast Ekstrakt Konsantrasyonlarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması

Farklı yeast ekstrakt konsantrasyonlarının enzim üretimi üzerindeki etkisinin araştırılması amacı ile yapılan deneyler sonucunda BM besi yeriden enzim aktivitesini düştirdiği bilinen beef ekstrakt çıkarılarak %0.5, %1, %1.5, %2, ve %3 yeast ekstrakt içeren BM besi yeri hazırlanıp otoklavlandı. Bakteri inoküle edilerek inkübasyon 37°C’de 120 rpm’de gerçekleştirilirdi. İnkübasyon süresi sonunda süpernatantta proteaz aktivite tayini ve protein miktar tayini yapıldı.

3.2.10. Farklı Karbon Kaynaklarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması

Farklı karbon kaynaklarının enzim üretimi üzerindeki etkisinin araştırılması amacı ile BM besi yerinden % 2’lik nişasta çıkarılarak aynı oranda glukoz, sükroz, maltoz, laktoz, galaktoz, fruktoz ve gliserol eklendi. Gliserolün sterilizasyonu ayrı bir erlende otoklavlanarak gerçekleştirilirdi. Gliserol haricindeki karbon kaynakları sterilizasyon amaci ile 20 dk. ultraviyole ışın (UV) altında tutuldu. Sterilizasyonu gerçekleştiren bütün karbon kaynakları BM besi yeri eklenedi. Bakteri inoküle edilerek inkübasyon 37°C’de 120 rpm’de gerçekleştirilirdi. İnkübasyon süresi sonunda süpernatantta proteaz aktivite tayini ve protein miktar tayini yapıldı.

3.2.11. Farklı Metal İyonlarının Enzim Üretimi Üzerindeki Etkisinin Araştırılması

Farklı metal iyonlarının enzim üretimi üzerindeki etkisinin araştırılması amacı ile CaCO₃, CaCl₂, NaCl, MgCl₂ ve MnCl₂ %0.5 oranında BM besi yere eklenecek otoklavlandı. Bakteri inoküle edilerek inkübasyon 37°C ’de 120 rpm’ de gerçekleştirildi. İnkübasyon süresi sonunda süpernatantta proteaz aktivite tayini ve protein miktar tayini yapıldı.

3.2.12. CaCl₂’ nin Enzim Üretimi Üzerindeki Etkisinin Araştırılması

CaCl₂’ nin enzim üretimi üzerindeki etkisinin araştırılması amacı ile besi yerinde konsantrasyonu %0, %0.01, %0.02, %0.05, %0.1, %0.2, %0.5 ve %1 olacak şekilde BM besi yerine CaCl₂ eklenecek otoklavlandı. Bakteri inoküle edilerek inkübasyon 37°C’de
120 rpm’ de gerçekleştirildi. İnkübasyon süresi sonunda süpernatantta proteaz aktivite tayini ve protein miktar tayini yapıldı.

3.2.13. Enzimin Saflaştırılması

3.2.13.1. Çöktürme ve Diyaliz

Diyaliz işlemi +4°C’ de gerçekleştirildiğinden, deneylerde kullanılan BM besi yerinin içeriğinde bulunan nişasta +4°C’ de çöktüğünden dolayı nişasta yerine laktoz kullanıldı.

İçeriğinde % 2’ lik nişasta bulundurmayın BM besi yeri otoklavlanduktan sonra, nişasta ile aynı oranda tartılan laktozun sterilizasyonu sağlanmak amacıyla 20 dk. UV altına tutulup steril kabinde besi yerine eklendi. Bakteri inkübasyon’dan sonra, %40, %45, %50, %55, %60, %65 ve %70’ lik amonyum sülfat çözünmesi için gereken amonyum sülfat miktari, buz altında ve magnetik karıştırıcı üzerine azar azar eklenerek çözünmesi sağlandı. Amonyum sülfat süpernatant içerisinde çözündükten sonra elde edilen sıvı 15 000 rpm’ de 3 dakika santrifüj edildi. Santrifüjdür dönen peletin çözünmesi 0.05 M Tris-HCl pH 7.0 tamponu kullanılarak sağlanmıştır.

0.05 M Tris-HCl pH 7.0 tamponunun çözünmüş pelet, kaynayan saf suda 5 dk bekletildikten sonra tekrar saf sudan geçirerek temizlenen diyaliz ortamında bırakıldı. Santrifüj sonrasında elde edilen sıvıyı amonyum sülfatdan arındırılmak amacıyla ile 1 gece +4°C’ de magnetik karıştırıcı üzerine 1 litre 0.05M Tris-HCl pH 7.0 tamponu kullanılarak inkübasyona bırakıldı. Diyaliz aşamasında toplam 2 litre tampon kullanıldı. Diyaliz sonunda final hacim ölçüldü. Ham ekstrakt ve diyaliz sonrasında Lowry (1977) yönteminde göre protein miktar tayini ve proteaz aktivite tayini yapıldı.

3.2.13.2. Sefadeks G-75 Jel Geçirgenlik Kolon Kromatografisi

Çöktürme ve diyaliz sonrası kısmi saflaştırılan enzimin daha ileri derecede saflaştırılması için proteinleri molekül büyüklüğüne göre ayrılma esasına dayanan jel geçirgenlik kolon kromatografisi gerçekleştirilirdi. Yükleme öncesinde sefadeks G-75
kolon materyali ürünün hazırlanış prosedürüne göre hazırlanıp kolona dolduruldu ve 2mM CaCl$_2$ içeren 0.1 M Tris-HCl (pH 7.0) tampon çözeltisi ile dengelendi.

Enzim ile yüklenmiş kolon öncelikle 0.1 M Tris-HCl (pH 7.0) tampon çözeltisi ile 1.5 ml/dk akış hızında yıkandı. Yıkama sonrasında kolondan alınan 1.5 ml’ lik her fraksiyonun 280 nm’ de absorbansı alındı.

Kolon yıkandıktan sonra fraksiyonların 280 nm’ de okunan absorbans değerleri kaydedildi. Daha sonra yüksek spesifik aktivite gösteren fraksiyonlar bir araya toplandı. Bu fraksiyonlar 50 mM 0.1 M Tris-HCl (pH 7.0) tampon çözeltisine karşı +4°C’ de gece boyunca diyaliz edildi. Liyofilizasyon sonrasında elde edilen solüsyonda proteaz enzim aktivitesi ve protein miktar tayini yapıldı.

3.2.14. Bazı Metal İyonlarının Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması

Bazı metal iyonların kısmi olarak saflaştırılan enzimin aktivitesi üzerindeki etkisinin araştırılması amacı ile CaCl$_2$, CuCl$_2$, MnCl$_2$, MgCl$_2$, ZnCl$_2$ ve HgCl$_2$’ den 10’ ar ml 90 mM’ lik stok çözelti hazırlandı. Deney tüplerinde enzim solüsyonu ve belirlenen miktarlarda metal iyonları oda sıcaklığında 15 dk. ön inkübasyona bırakıldı. Ön inkübasyon süresi sonunda deney tüplerine substrat eklenerek enzim için optimum olan koşullarda aktivite tayini yapıldı.

3.2.15. Bazı Metal Şelatör ve Kimyasal Maddelerin Enzim Aktivitesi Üzerine Etkisinin Araştırılması

B.cereus KG5 %2’ lik laktoz içeren BM besi yerinde üretilerek 24. saatte kültür 10 000 rpm’ de 5 dk. santrifüjlendi. Elde edilen üst sıvı (süpernatant) enzim aktivite tayininde kullanılmak üzere çöktürme ve diyaliz işlemlerine tabi tutuldu.

Kısım saflaştırılmış enzimin aktivitesinde bazı metal şelatör ve kimiyasal maddelerin etkisini belirlemek için EDTA, 1,10-Phenanthroline ve PMSF maddelerinden 1-10 mM arasındaki konsantrasyonlar kullanıldı. 1,10-Phenanthroline metanolde ve PMSF etanolde hazırlanğı için aynı orandaki metanol ve etanolün enzim aktivitesine olan etkisi araştırıldı. EDTA, 0.1 M Tris-HCl (pH 7.0) tamponunda çözülmüşdür. Uygun konsantrasyonlardaki metal şelatör ve kimiyasallar enzim solüsyonu ile oda sıcaklığında 15 dk. muamele edildi. Deney tüplerinde enzim
solüsyonu ve belirlenen miktarlarda metal şelatör ve kimyasal maddeler oda sıcaklığında 15 dk. ön inkübasyona bırakıldı. Ön inkübasyon süresi sonunda deney tüplerine substrat eklenerek enzim için optimum olan koşullarda aktivite tayini yapıldı.

3.2.16. Bazı Deterjanların Enzim Aktivitesi Üzerindeki Etkisinin Araştırılması

Bazı deterjanların kısmi olarak saflaştırılan enzimin aktivitesi üzerindeki etkisinin araştırılması amacı ile SDS, Triton X-100, Tween-80 ve içeriğinde enzim bulundurmayan ticari ALO deterjanından 10’ar ml %5’lik stok çözeltisi hazırlanıdı. Deney tüplerinde enzim solüsyonu ve belirlenen miktarlarda deterjan oda sıcaklığında 15 dk. ön inkübasyona bırakıldı. Ön inkübasyon süresi sonunda deney tüplerine substrat eklenerek enzim için optimum olan koşullarda aktivite tayini yapıldı.

3.2.17. Enzimin Termal Stabilitesinin Belirlenmesi ve CaCl\textsubscript{2}’nin Termostabiliteye Etkisinin Araştırılması

Kısımlar saflaştırılmış enzim solüsyonunun termotabilitesinin araştırılması amacı ile enzim, 40–50 ºC sıcaklık aralıklarında 30-120 dk. tutularak yapıldı. CaCl\textsubscript{2}’nin enzimin termo stabilitesine etkisini belirlemek için reaksiyonun toplam hacminde 2 mM CaCl\textsubscript{2} olarak şekilde hazırlanıcı CaCl\textsubscript{2} stogundan uygun miktar alınarak enzim solüsyonu ile birlikte 50°C’de 30-120 dk. bekletildi. Enzim solüsyonu test edilen her sıcaklıkta 30-120 dk. bekletildi. Daha sonra enzim için optimum olan koşullarda aktivite tayini yapıldı. Kalan aktivitenin hesaplanması amacıyla analiz sonuçları orijinal enzim aktivitesiyle karşılaştırıldı.

3.2.18. Proteaz Enziminin Elektroforetik Analizi

Çözeltiler

% 30 akrilamid / % 0.8 bis akrilamid: 30 g akrilamid, 0.8 g bis akrilamid saf su ile 100 ml’ye tamamlanıdı, filtre edildi. Koyu renkli şişede 4ºC’de saklandı.
1.5 M Tris.HCl pH 8.8: 54.45 g Tris-base 150 ml’ ye tamamlanıdı, 1N HCl ile pH 8.8’e ayarlandı, hacim saf su ile 300 ml’ ye tamamlanıdı, filtre edilerek 4ºC’de saklandı.
0.5 M Tris-HCl pH 6.8: 6 g Tris-base 60 ml saf su suda çözündü, 1N HCl ile pH 6.8’e getirildi, hacim saf su ile 100 ml’ ye tamamlanıdı, filtre edilerek 4ºC’de saklandı.
%10’ luk APS (amonyum per sülfat) : 0.1 g APS saf su ile 1 ml’ ye tamamlandı. Taze olarak hazırlanmalıdır.

Elektroforez tamponu: 3 g Tris, 14.4 g glisin, 0.1 g SDS, 1000 ml saf su ilave edilerek hazırlanı ve 4°C’ de saklandı.

Non – Denatüre Jel İçin %0.01 SDS İçeren İz boya (örnek boya) : 7 ml 0.1 M Tris. HCl pH 6.8, 0.001 g SDS, 3.6 ml gliserol, 1.2 mg BFB ile 10 ml saf su ilave edildi. 1’ er ml olacak şekilde, ependorflara konarak -70°C’ de saklandı.

Denatüre jel için SDS İçeremeyen İz boya (örnek boya): 7 ml 0.1M Tris. HCl pH 6.8, 3.6 ml gliserol, 1.2 mg BFB ile 10 ml saf su ilave edildi. 1’ er ml olacak şekilde ependorflara konarak -70°C’ de saklandı.

% 10’ luk SDS: 0.1 g SDS saf su ile 1 ml’ ye tamamlandı.
% 0.1’ lik jelatin: 0.0075 g jelatin saf su ile 1 ml’ ye tamamlandı.

3.2.18.1. %0.1 Jelatin İçeren Non -denatüre Poliakrilamid Jel Elektroforezi ile Zimogram Analizi ve SDS-PAGE ile Enzimin Moleküler Ağırlığının Belirlenmesi

3.2.18.1.2. Jellerin hazırlanması

3.2.18.1.3. Elektroforez İşlemi

SDS-PAGE’ de SDS’ li iz boya ile karıştırılan örnekler, kaynanan suda 5 dk. bekletilmek suretiyle denatüre edildi. Denatüre edilen ham özüt, çözürtme& diyaliz ve Sefadeks G-75 jel geçirgenlik kromatografisi sonrası örneklerinden her kuyucuğa iz boya ve örnek karışımından uygun miktarlarda yüklenerek elektroforez işlemi gerçekleştirildi.
Nazenin AHMETOĞLU

Non-denatüre jel elektroforezinde ham özüt, çöktürme& diyaliz ve Sefadeks G-75 jel geçirgenlik kromatografisi sonrası elde edilen enzim solüsyonlarının uygun miktarlar non-denatüre iz boya ile karıştırlı ve sonrasında elektroforez işlemi gerçekleştirildi.

Elektroforez yapılacağı zaman jelin üzerindeki su alındı. Örnekler kuyucuklara sırasıyla konuldu. 1.00 mm’ lik jele 150V (50 mA) akım verildi, yaklaşık 3 saat sonra elektroforez işlemi tamamlandı.

Camlar arasındaki %0.1 jelatin içeren non-denatüre jeli çıkarılduktan sonra SDS’yi uzaklaştırarak renatüre olmalarını sağlamak için jel 45 dk %2.5 Triton X-100 içeren 0.1 M Tris-HCl (pH 7.0) tamponunda yıkandı. Jel daha sonra 3 saat % 2.5 Triton X-100 ve 5 mM CaCl₂ içeren 0.1 M Tris-HCl (pH 7.0) tamponunda bekletildi. Sonra tampon çözeltisi döküldü jeleninli jel Comassie Brillant Blue R-250 boyasında 2 saat bekleterildikten sonra boya çıkarma solüşyonuna alınıp incelemeye alındı.

Camlar arasındaki SDS-PAGE jeli çıkarılduktan sonra jel Coomassie Brillant Blue R-250 ile boyandı ve boya çıkarma solüşyonu ile iyice yıkandı. R₉ değerleri hesaplanan numunelerin semilogaritmik bir skalada standart proteinlerle karşılaştırılarak belirlenerek enzimin molekül ağırlığının yaklaşık değeri hesaplandı.

\[R_9 = \frac{\text{Numunenin aldığı yol}}{\text{İz boyanın aldığı yol}} \]
4. BULGULAR VE TARTIŞMA

4.1. BULGULAR

4.1.1. Sıcaklığın Enzim Aktivitesi Üzerindeki Etkisi

![Şekil 4.1. Sıcaklığın enzim aktivitesi üzerindeki etkisi](image)

4.1.2. pH’nin Enzim Aktivitesi Üzerindeki Etkisi

Proteaz enziminin aktivitesi üzerinde pH’nin etkisini belirlemek amacı ile 0.1 M sodyum fosfat (6.0-6.5), 0.1 M Tris-HCl (7.0-9.0) ve 0.1 M NaOH-Glisin (9.0-11.0) tamponlarında %0.5’lik azokazein solüsyonu hazırlanarak aktivite tayini yapıldı ve optimum pH değeri belirlendi. Enzim aktivitesinin pH 6.5-7.0 arasında hızlı bir artış gösterdiği, pH 7.0-7.5 arasında optimuma yakın aktivite gösterdiği, pH 7.5’ten sonra gittikçe azalan bir aktivite eğiliminde olduğu görülmüştür. Optimum pH 7.0 olarak tespit edilmiştir (Şekil 4.2.).
4. BULGULAR VE TARTIŞMA

4.1.3. Farklı Besi Yerlerinin Enzim Üretimi Üzerindeki Etkisi

Farklı besi yerlerinin enzim üreterini üzerindeki etkisinin araştırılması için içerikleri farklı olan NB, GPM ve BM besi yerlerinde bakteriler 37°C’de 120 rpm’de 24 saat inkübasyonu bırakılmıştır. İnkübasyon süresinden sonra üst sıvılardan proteaz aktivite tayini yapılmıştır. Analiz sonuçlarına proteaz aktivite sıralaması BM > NB > GPM şeklinde olduğu tespit edilmiştir (Şekil 4.3.).
4.1.4. BM Besi Yerinde Değişik İnkübasyon Sürelerinin Enzim Üretimi Üzerindeki Etkisi

3, 6, 12, 24, 36, 48, 60, 72, 84, 96 ve 108 saatler arasında BM besi yerinde kültüre alınan bakterilerde zamana bağlı enzim üretimi araştırılmıştır. İnkübasyon süresinden sonra elde edilen üst sıvılar ile bakteri OD (optik density)'si ölçülp hem proteaz aktivite tayini hem de protein miktar tayini yapılarak spesifik aktivite (U/mg) tespit edilmiştir. Enzim aktivitesinin 3. saatten 24. saate kadar devam ettiği gözlemlenmiştir. Maksimum enzim aktivitesi 24. saatte elde edilmiştir. Enzimin spesifik aktivite değerleri 3, 6, 12, 24 saatlerinde sırasıyla 1450.6 U/mg, 4546.0 U/mg, 5415.0 U/mg, 7235.4 U/mg, olarak tespit edilmiştir (Şekil 4.4.).

Şekil 4.4. BM besi yerinde değişik inkübasyon sürelerinin enzim üretimi üzerindeki etkisi

4.1.5. Farklı Azot Kaynaklarının Enzim Üretimi Üzerindeki Etkisi

Farklı azot kaynaklarının enzim üretimi üzerindeki etkinin araştırılması amacıyla BM besi yerinden %0.2 yeast ekstrakt ve %1 beef ekstrakt çıkarılarak, %1.2 oranında yeast ekstrakt, beef ekstrakt, pepton, jelatin, üre, amonyum sülfat, amonyum klorür ve tripton eklenerek otoklavlandı. Ekimi yapılan bakteriler 37°C’ de 120 rpm’ de 24 saat inkübasyona bırakıldı. İnkübasyon süresinden sonra elde edilen üst sıvılar ile bakteri OD’ si ölçülp hem proteaz aktivite tayini hem de protein miktar tayini yapılarak spesifik aktivite (U/mg) tespit edilmiştir. Kontrole karşılaştırıldığında (7761 U/mg) kullanılan azot kaynaklarından amonyum sülfat (17563 U/mg), amonyum klorür (14003 U/mg) ve jelatinde (9930 U/mg) enzim aktivitesi tespit edilmiştir. Tripton (6188 U/mg) ve peptonda (3033 U/mg) kontrole göre daha düşük bir aktivite elde edilmiştir.
4. BULGULAR VE TARTIŞMA

En yüksek aktivite yeast ekstraktta (109646 U/mg) ve ürede (46844 U/mg) elde edilmiştir (Şekil 4.5.).

4.1.6. Farklı Yeast Ekstrakt Konsantrasyonlarının Enzim Üretimi

Farklı yeast ekstrakt konsantrasyonlarının enzim üretimi üzerindeki etkisinin araştırılması amacı ile %0.5, %1, %1.5, %2, ve %3 yeast ekstrakt içeren BM besi yeri hazırlanıp otoklavlanarak bakteri ekimi yapıldı. Ekimi yapılan bakteriler 37°C’de 120 rpm’de 24 saat inkübasyona bırakıldı. İnkübasyon süresinden sonra elde edilen üst sıvılar ile bakteri OD’ sı ölçülmüş hem proteaz aktivite tayini hem de protein miktar tayini yapılarak spesifik aktivite (U/mg) tespit edilmiştir. Kontrolle (6476 U/mg) karşılaştırıldığında %0.5 (156377 U/mg), %1 (84285 U/mg), %1.5 (32414 U/mg), %2 (32414 U/mg), ve %3 (12350 U/mg)’ teki konsantrasyonların tamamında enzim aktivitesinde artış gözlenmiştir. En yüksek enzim aktivitesi %0.5 (156377 U/mg), en düşük ise %3 (12350 U/mg) konsantrasyonlarında elde edilmiştir. Artan yeast konsantrasyonlarında enzim aktivitesinde azalmalar gözlenmiştir (Şekil 4.6.).
4.1.7. Farklı Karbon Kaynaklarının Enzim Üretimi Üzerindeki Etkisi

Farklı karbon kaynaklarının enzim üretimi üzerindeki etkisinin araştırılması amacı ile BM besiyerinden %2′ lik nişasta çıkarılanlar aynı oranda glukoz, sükröz, maltoz, laktoz, galaktoz, fruktoz ve gliserol eklenceler bakteri ekimi yapıldı. Ekimi yapılan bakteriler 37°C’ de 120 rpm’ de 24 saat inkübasyonu bırakıldı. İnkübasyon süresinden sonra elde edilen üst sıvılar ile bakteri OD’si ölçülp hem proteaz aktivite tayini hem de protein miktar tayini yapılarak spesifik aktivite (U/mg) tespit edilmiştir. Kontrolle (5399.9 U/mg) karşılaştırıldığında, galaktoz (5279.7 U/mg), gliserol (772.4 U/mg), sükröz (561.4 U/mg), maltoz (292.6 U/mg) ve fruktozda (297.5 U/mg) daha düşük aktivite elde edilmiştir. En yüksek ve en düşük aktivite sırasıyla laktozda (6485.2 U/mg), glukozda (21.1 U/mg) elde edilmiştir (Şekil 4.7.).
4.1.8. Farklı Metal İyonlarının Enzim Üretimi Üzerindeki Etkisi

Farklı metal iyonlarının enzim üretimi üzerindeki etkisinin araştırılması amacı ile CaCO₃, CaCl₂, NaCl, MgCl₂ ve MnCl₂ %0.5 oranında BM besiyerine eklenerek otoklavlanarak bakteri ekimi yapıldı. Ekimi yapılan bakteriler 37°C’de 120 rpm’de 24 saat inkübasyona bırakıldı. İnkübasyon süresinden sonra elde edilen üst sıvılar ile bakteri OD’si ölçülüp hem proteaz aktivite tayini hem de protein miktar tayini yapılarak spesifik aktivite (U/mg) tespit edilmiştir. Kontrol (3672 U/mg) ile karşılaştırdığında besiyerine %0.5 oranında CaCl₂ (7029 U/mg)’nin eklenmesi enzim üretimini yaklaşık 2 kat arttırduğu tespit edilmiştir. Kontrole göre CaCO₃’ün enzim üretimini arttırdığı, MgCl₂’nin ise enzim üretiminde bir azalmaya neden olduğu gözlemlemiştir. NaCl (115 U/mg) ve MnCl₂ (83.6 U/mg)’nin kontrole göre enzim üretimini önemli ölçüde azalttığı tespit edilmiştir (Şekil 4.8.).
4.1.9. CaCl₂’ nin Enzim Üretimi Üzerindeki Etkisi

CaCl₂’ nin enzim üretimi üzerindeki etkisinin araştırılması amacı ile besi yerinde konsantrasyonu %0, %0.01, %0.02, %0.05, %0.1, %0.2, %0.5 ve %1 olarak şekilde BM besi yerine CaCl₂ eklenerek otoklavlanarak bakteri inokülasyonu yapıldı. İnokülasyon yapılan bakteriler 37°C de 120 rpm’ de 24 saat inkübasyona bırakıldı. İnkübasyon süresinden sonra elde edilen üst sıvılar ile bakteri OD’ si ölçülüp hem proteaz aktivite tayini hem de protein miktar tayini yapılarak spesifik aktivite (U/mg) tespit edilmiştir.

Kontrolle (3327,6 U/mg) karşılaştırıldığında %0.05, %0.1, %0.2, %0.5 ve %1’ lik CaCl₂ konsantrasyonlarında enzim aktivitesinde artış gözlemlenmiştir. En yüksek enzim aktivitesi %0.5 (5841.0 U/mg), en düşük ise %0 (76.9 U/mg) CaCl₂ konsantrasyonlarında elde edilmiştir (Şekil 4.9.).
4. BULGULAR VE TARTIŞMA

Şekil 4.9. CaCl$_2$’nin enzim üretimi üzerindeki etkisi

4.1.10. Proteaz Enziminin Saffaştırılması

B. cereus KG5 BM besi yerinde üretilerek 24. saatte kültür 10 000 rpm’de 5 dk. santrifüjlenmiştir. Elde edilen üst sıvı (süpernatant) çöktürme ve diyaliz işlemlerine tabi tutulmuştur. Çöktürme ve diyaliz sonrası kısmi saflaştırılan enzimin daha ileri derecede saflaştırılması için proteinleri molekül büyüklüğüne göre ayırma esasına dayanan Sephadeks G-75 jel geçirgenlik kolon kromatografisi gerçekleştirilmişdir. *B. cereus* KG5’ e ait proteaz enzimi amonyum sülfat çöktürmesi&diyaliz ve Sepakeds G-75 jel geçirgenlik kromatografisi ile %23 verimle 13 kat saflaştırılmıştır (Çizelge 4.1.).

Çizelge 4.1. Proteaz enzminin saflaştırma tablosu

<table>
<thead>
<tr>
<th>Saffaştırma Adımı</th>
<th>Total Protein (mg)</th>
<th>Total Aktivite (U)</th>
<th>Spesifik Aktivite (U/mg)</th>
<th>Saffaştırma Katsayısı</th>
<th>Verim (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham Ekstrakt</td>
<td>68.8</td>
<td>520174.0</td>
<td>7557.1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Çöktürme & Diyaliz</td>
<td>2.7</td>
<td>211862.4</td>
<td>77496.4</td>
<td>10</td>
<td>41</td>
</tr>
<tr>
<td>Sepakeds G-75 Jel Geçirgenlik Kromatografisi</td>
<td>1.2</td>
<td>118798.8</td>
<td>96941.1</td>
<td>13</td>
<td>23</td>
</tr>
</tbody>
</table>
4.1.11. Bazı Metal İyonlarının Enzim Aktivitesi Üzerindeki Etkisi

B. cereus KG5 BM besi yerinde üretilek 24. saatte kültür 10 000 rpm’ de 5 dk. santrifüjленmiştir. Elde edilen üst sıvı (süpernatant) enzim aktivite tayininde kullanılmak üzere çöktürme ve diyaliz işlemlerine tabi tutulmuştur.

Bazı metal iyonlarının kısmi olarak saflaştırılan enzimin aktivitesi üzerindeki etkisini belirlemek amacıyla 90 mM’ lik CaCl₂, CuCl₂, MnCl₂, MgCl₂, ZnCl₂ ve HgCl₂’den stok çözeltiler hazırlanmıştır. Enzim solüsyonu bu metaller ile 15 dk. muamele edilmiştir ve aktivitesi spektrofotometrik olarak ölçülmüştür. Analiz sonuçlarının kontrol ile karşılaştırılması sonucunda CaCl₂ ve MgCl₂’in enzim aktivitesinde artışa yol açtığı görülmüştür. 5 mM CaCl₂ enzim aktivitesini %129, 10 mM MgCl₂ ise %89 oranında artmasına yol açtığı gözlemiştir. CuCl₂, HgCl₂ ve ZnCl₂ en yüksek inhibisyon etkilerini 10 mM’ da sırasıyla %100, %100’ den fazla ve %96 oranında enzim aktivitesini inhibe ederek göstermiştir. MnCl₂’ nin 2 mM’ da enzim aktivitesini %29 oranında artırırken, 10 mM’ da %50 oranında inhibe ettiği göstermiştir (Çizelge 4.2).

Çizelge 4.2. Bazı metal iyonlarının enzim aktivitesi üzerindeki etkisi

<table>
<thead>
<tr>
<th>Metaller</th>
<th>Rölatif Aktivite (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mM</td>
</tr>
<tr>
<td>Kontrol</td>
<td>100</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>224</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>165</td>
</tr>
<tr>
<td>CuCl₂</td>
<td>7</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>63</td>
</tr>
<tr>
<td>HgCl₂</td>
<td>17</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>107</td>
</tr>
</tbody>
</table>

B. cereus KG5 BM besi yerinde üretilek 24. saatte kültür 10 000 rpm’ de 5 dakika santrifüjlenmiş. Elde edilen üst sıvı (süpernatant) enzim aktivite tayininde kullanılmak üzere çöktürme ve diyaliz işlemlerine tabi tutulmuştur.
Kısmi saflaştırılmış enzimin aktivitesinde bazı metal şelatör ve kimyasal maddelerin etkisini belirlemek için EDTA, 1,10-Phenanthroline, PMSF maddelerinden 1-10 mM arasındaki konsantrasyonlar kullanılmıştır. Uygun konsantrasyonlardaki metal şelatör ve kimyasallar enzim solüsyonu ile oda sıcaklığında 15 dk. muamele edilmiştir. 1,10-Phenanthroline metanolde ve PMSF etanolde hazırlanışı için aynı orandaki metanol ve etanolün enzim aktivitesine olan etkisi araştırılmıştır. EDTA, 0.1 M Tris-HCl (pH 7.0) tamponunda çözüldü. Kontrol ile karşılaştırıldığında EDTA ve 1-10 phenantroline’ in 10 mM’ da proteaz enzimini sırasıyla %96 ve %95 değeriyle güçlü bir şekilde inhibe ettiği görülmektedir. PMSF’ nin etkisinde ise etanole bağlı bir inhibisyonun olduğu görülmektedir (Çizelge 4.3.).

<table>
<thead>
<tr>
<th>Metal şelatör ve inhibitörler</th>
<th>Rülatif Aktivite (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mM</td>
</tr>
<tr>
<td>Kontrol</td>
<td>100</td>
</tr>
<tr>
<td>EDTA</td>
<td>6</td>
</tr>
<tr>
<td>PMSF</td>
<td>95</td>
</tr>
<tr>
<td>ETANOL</td>
<td>98</td>
</tr>
<tr>
<td>1,10-Phenanthroline</td>
<td>6</td>
</tr>
<tr>
<td>METANOL</td>
<td>98</td>
</tr>
</tbody>
</table>

4.1.13. Bazı Deterjanların Enzim Aktivitesi Üzerindeki Etkisi

Kısmi saflaştırılan enzimde bazı deterjanların etkisini belirlemek için %0.1, %0.2, %0.5 ve %1 oranında deterjan çözeltileri ile enzim solüsyonu 15 dk. pre-inkübasyona bırakılmış ve daha sonra proteaz aktivite tayini yapılmıştır. Deterjan olarak SDS, Triton X-100, Tween-80 ve içeriğinde enzim bulunmayan ticari Alo kullanılmıştır.

Analiz sonuçlarının orijinal enzim aktivitesiyle karşılaştırılması sonucu enzim aktivitesini %1 SDS tamamen, %1 Alo %84 oranında, %0.5 Triton X-100 %5 oranında ve %0.1 Tween-80 %2 oranında inhibe ettiği gözlemlenmiştir (Şekil 4.10.).
Şekil 4.10. Bazı deterjanların enzim aktivitesi üzerindeki etkisi

4.1.14. Enzimin Termal Stabilitesinin Belirlenmesi

Bakteriler BM besiyerinde üretilerek 24. saatte besi yerine 10 000 rpm’de 5 dk. santrifüjlendi, elde edilen enzim solüsyonunun kısımi saflaştırılması gerçekleştirildi. Elde edilen enzim solüsyonunun termostabilitesinin araştırılması 40–50°C sıcaklık aralıkları kullanılarak yapıldı. CaCl₂ in enzimin termostabilitesine etkisini belirlemek için reaksiyonun toplam hacminde 2 mM CaCl₂ olacak şekilde hazırlanan CaCl₂ stoğundan uygun miktar alınarak enzim solüsyonu ile birlikte 50°C’de 30-120 dk. bekletildi.

Enzim solüsyonu test edilen her sıcaklıkta 30-120 dk. bekleltildi. Daha sonra 250 μl substrat eklendi ve 30 dk. 45°C inkübasyona bırakıldı. 40°C’de 120 dakika sonunda enzimin oldukça stabil olduğu ve aktivitesinin % 101 olduğu tespit edilmiştir. 45°C’de enzim 60 dk. sonunda %95 oranında aktivite gösterirken 120 dk. sonunda kalan enzim aktivitesinin %77 olduğu tespit edilmiştir. 50°C’de ise 120 dk. sonunda kalan enzim aktivitesinin %31 olduğu tespit edilmiştir (şekil 4.11.).
4.1.15. CaCl₂’ nin Termostabiliteye Etkisinin Araştırılması

CaCl₂’ nin enzimin termostabilitesine etkisini belirlemek için reaksiyonun toplam hacminde 2 mM CaCl₂ olacak şekilde hazırlanan CaCl₂ stoğundan uygun miktar alınarak enzim solusyonu ile birlikte 50ºC’ de 30-120 dk. bekletildi. Enzim solusyonu test edilen her sıcaklıkta 30-120 dk. bekletildi. Daha sonra 250 µl substrat ekleni ve 30 dk. 45ºC’ de inkübasyona bırakıldı. İnkübasyon süresi sonunda reaksiyon durdurularak 420 nm’ de absorbans değerleri alındı. Kalan aktivitenin hesaplanması amacıyla analiz sonuçları orijinal enzim aktivitesiyle karşılıklılaştırıldı. 50ºC’ de 2 mM CaCl₂ ile birlikte enzimin 30 dk., 60 dk. ve 120 dk. sonunda sırasıyla kalan aktiviteleri %125, %115 ve %102 olarak tespit edilmiştir (Şekil 4.12.).
4.1.16. Proteaz Enziminin Elektroforetik Analizi

4.1.16.1. Sodyum Dodesil Sülfat Poliakrilamid Jel Elektroforezi (SDS-PAGE) ile Enzimin Molekül Ağırlığının Belirlenmesi

Şekil 4.13. te de görüldüğü gibi elektroforezde yürütülen örneklerin Rf değerleri hesaplanarak enzimin molekül ağırlığının yaklaşık olarak 48 kDa civarında olduğu tespit edilmiştir.

Şekil 4.13. Standart proteinlerin Rf değerleri yardımcıyla proteaz enziminin molekül ağırlığının belirlenmesi
4. BULGULAR VE TARTIŞMA

Şekil 4.14. SDS-PAGE (1:standart protein karışıımı (β-galaktozidaz, fruktoz fosfat, α-amilaz), 2:çöktürme&diyaliz, 3:sefadeks G-75 jel geçirgenlik kromatografisi sonrası) ile saflaştırılan proteaz enziminin varlığı tespit etmek amacıyla jelden oluşturulan kuyucuklara sırasıyla pozitif kontrol olarak kullanılan Bacillus polymxa’ ya ait proteaz enzimi (A), ham ekstrakt (ham özüt) (B), çöktürme&diyaliz (C), sefadeks G-75 jel geçirgenlik kromatografisi sonrası (D) elde edilen örnekler örnekler paralel olarak elektroforetik işleme tabi tutulmuştur. Bu işlem sonucunda elektroforeze uygulanan ham ekstrakt, çöktürme&diyaliz ve sefadeks G-75 jel geçirgenlik kromatografisi sonrası protein örneklerinin ve pozitif kontrol olarak kullanılan Bacillus polymxa’ ya ait proteaz enziminin göçü Şekil 4.15.’ te görülmektedir.

4.1.16.2. %0.1 Jelatin İçeren Non-denatüre Poliakrilamid Jel Elektroforezi ile Zimogram Analizi

Sefadeks G-75 jel geçirgenlik kromatografisi ile saflaştırılan proteaz enziminin varlığı tespit etmek amacıyla jelden oluşturulan kuyucuklara sırasıyla pozitif kontrol olarak kullanılan Bacillus polymxa’ ya ait proteaz enzimi (A), ham ekstrakt (ham özüt) (B), çöktürme&diyaliz (C), sefadeks G-75 jel geçirgenlik kromatografisi sonrası (D) elde edilen örnekler örnekler paralel olarak elektroforetik işleme tabi tutulmuştur. Bu işlem sonucunda elektroforeze uygulanan ham ekstrakt, çöktürme&diyaliz ve sefadeks G-75 jel geçirgenlik kromatografisi sonrası protein örneklerinin ve pozitif kontrol olarak kullanılan Bacillus polymxa’ ya ait proteaz enziminin göçü Şekil 4.15.’ te görülmektedir.

62
Şekil 4.15’te görülen proteaz enziminin bulunduğu yer, enzimin jelatini parçalamasından dolayı diğer bölgelere oranla daha açık renkte görünecektir ki bu da proteaz enziminin varlığını teyit etmektedir (Şekil 4.15.).

Şekil 4.15. %0.1 Jelatin içeren non-denatüre jel elektroforezi (A: Bacillus polymxa’ya ait proteaz enzimi, B: ham ekstrakt, C: çöktürme&diyaliz, D: sefađeks G-75 jel geçirgenlik kromatografisi sonrası)
4. TARTIŞMA

Reyhan Gül Güven tarafından Bingöl Kös kaplıcasından izole edilen *Bacillus cereus* KG5’ in katı besi yerinde yapılan kazein hidrolaz testi sonucunda besi yerindeki kazeini parçalamak için yüksek miktarda proteaz sentezlesmesinden dolayı çalışmalımızda kullanılmıştır (Gül Güven 2007).

Çalışmamızda enzim üretimi üzerine farklı besi yerlerinin etkisi araştırılmıştır. Bu amaç ile içerikleri farklı olan NB, BM ve GPM besi yerleri kullanılmıştır. Şekil 4.3.’ te görüldüğü gibi BM besi yerinde proteaz üretimi en yüksek değerde gözlenmiştir. Bu durum BM besi yerinin içerik olarak proteaz enzim üretimi için yeterli olması şeklinde

Banik ve Prakash (2004), *Bacillus cereus*’un ve Frikha ve ark. (2005), *Bacillus cereus* BG1’in maksimum proteaz üretimi için en uygun kültür ortamının farklı oranlarda CaCl₂ içerdigini belirtirken, Gençkal ve Tari (2006), alkalifilik *Bacillus* sp’ den alkalin proteaz üretimi için besi yerinin %0.5 yeast ekstrakt içerdigini belirtmişlerdir.

Çalışmamızda enzim üretimi üzerine azot kaynaklarının etkisini belirlemek amacıyla ile BM besi yeri ortamından %0.2 yeast ekstrakt ve %1 beef ekstrakt çıkartılıarak %1.2 oranında farklı azot kaynakları eklenerek proteaz aktivite tayinine bakılmıştır. Şekil 4.5.’te de görüldüğü gibi azot kaynaklarından yeast ekstrakt ve ürede kontrole

Frikiha ve ark. (2005), Bacillus cereus BG1’ in azot kaynağı olarak %0.2 oranında yeast ekstrat kullanıldığında proteaz üretiminin önemli miktarlarda arttığını tespit etmişlerdir. Patel ve ark. (2005), haloalkalifilik Bacillus sp’ in azot kaynağı olarak jelatin ve kazamino asit kullanıldığında proteaz üretiminin arttığını ve tripton, ve soya pepton kullanıldığında ise proteaz üretiminin yüksek oranda azaldığını belirtmışlardır. Shafee ve ark. (2005), Bacillus cereus 146’ in organik azot ve inorganik azot kaynaklarından sırasıyla beef ekstrakt ve üre kullanıldığında en yüksek proteaz aktivitesinin edildğini belirtmişlerdir. Nilegaonkar ve ark. (2007), Bacillus cereus MCM B-326’ in azot kaynağı olarak %1 soya küspesi kullanıldığında en yüksek proteaz aktivitesinin edildğini belirtmişlerdir. Abidi ve ark. (2008), Botrytis cinerea’ in azot kaynağı olarak yeast ekstrakt ve pepton karşımı kullanıldığında proteaz üretiminin arttığını ve üre kullanıldığında ise proteaz üretimini inhibe ettiği belirtmişlerdir.

Çalışmamızda enzim üretimi üzerine farklı yeast ekstrakt konsantrasyonlarının etkisini belirlemek amacı ile BM besi yerinden beef ekstrakt çıkarılarak farklı konsantrasyonlarda yeast ekstrakt içeren besi yerlerinde inkübasyon sonrası proteaz aktivite tayini yapılmıştır. Şekil 4.6.’da görüldüğü gibi kontrolde (6476 U/mg) karşılaştırıldığında %0.5 (156.37 U/mg), %1 (84285 U/mg), %1.5 (32414 U/mg), %2 (32414 U/mg), ve %3 (12350 U/mg)’ teki konsantrasyonların tamamında enzim aktivitesinde artış gözlenmiştir. En yüksek enzim aktivitesi 156.37 U/mg değeri ile %0.5, en düşük aktivite ise 12350 U/mg değeri ile %3 yeast konsantrasyonunda elde edilmiştir. Besi yeri ortama yeast ekstraktın eklenmesi bakterinin enzim sentezi sırasında yeast ekstraktı kullanarak enzim sentezini arttırmayı ile açıklanabilir. Johnvesly ve Naik (2001), yeast ekstraktın %0.1-0.5 konsantrasyonları enzim sekresyonuna izin verirken organik azot kaynaklarının yüksek konsantrasyonlarının (%1 w/v) proteaz sekresyonunu represe ettiği belirtilmiştir.
Farklı azot kaynaklarından Banerjee ve ark. (1999), *Bacillus brevis'* in %1 soya tozunun yamsıra %1 yeast ekstrakt kullanıldığında da, Johnvesly ve Naik (2001), termofilik ve alkalifik *Bacillus* JB-99' da %1 NaNO₃ ve %0.4 yeast ekstrakt kullanıldığında, Friska ve ark. (2005), *Bacillus cereus* BG1' in besi yerine %0.2 oranında yeast ekstrakt eklenliğinde maksimum proteaz üretiminin sağlandığını belirtmişlerdir.

Çalışmamızda enzim üretimi üzerine karbon kaynaklarının etkisini belirlemek amacıyla ile BM besi yeri ortamından %2 nişasta çıkarılarak %2 oranında farklı karbon kaynakları eklenerek proteaz aktivite tayinine bakılmıştır. Şekil 4.7'de görüldüğü gibi kontrole (5399.9 U/mg) karşılaştırıldığında galaktoz (5279.7 U/mg), gliserol (772.4 U/mg), sükröz (561.4 U/mg), maltoz (292.6 U/mg) ve fruktozda (297.5 U/mg) daha düşük aktivite elde edilmiştir. En yüksek ve en düşük aktivite sırasıyla laktozda (6485.2 U/mg) ve glukozda (21.1 U/mg) elde edilmiştir. Enzim üretiminin laktoz ve galaktozda artması, bakterinin bu karbon kaynaklarını kullanarak enzim sentezini arttırdığı şeklinde düşünülebilir. Glukozun enzim sentezini neredeyse represe etmesi katabolik bir represyonun olduğunun göstergesi olarak yorumlanabilir.

Çalışmamızda %0.5 oranında CaCO₃, CaCl₂, NaCl, MgCl₂ ve MnCl₂ gibi metal iyonlarının enzim üretimi üzerine etkisi araştırıldı. Şekil 4.8.’de görüldüğü gibi kontrol (3672 U/mg) ile karşılaştırıldığında besi yerine %0.5 oranında CaCl₂ (7029 U/mg)’ nin eklenmesi enzim üretimini yaklaşık 2 kat arttırdığı tespit edilmiştir. Kontrol ile karşılaştırıldığında CaCO₃’ ün enzim üretimini arttırdığını, MgCl₂ ise enzim üretiminde bir azalmaya neden olmuştur. NaCl (115 U/mg) ve MnCl₂ (83.6 U/mg)’ nin kontrole göre enzim üretimini önemli ölçüde azalttığı tespit edilmiştir. Enzim üretiminin CaCO₃
ve CaCl₂’ de artması, bakterinin özellikle Ca²⁺ iyonunu kullanarak enzim sentezini artırdığı şeklinde düşünülebilir.

Çalışmamızda CaCl₂’ nin enzim üretimi üzerindeki etkisinin araştırılması amacı ile %0, %0.01, %0.02, %0.05, %0.1, %0.2, %0.5 ve %1 CaCl₂’ nin enzim üretimi üzerindeki etkisi araştırıldı. Şekil 4.9.’da da görüldüğü gibi kontrolle (3327.6 U/mg) karşılaştırıldığında %0.05, %0.1, %0.2, %0.5 ve %1 CaCl₂ konsantrasyonlarında enzim aktivitesinde artış gözlemlenmiştir. En yüksek enzim aktivitesi 5841.0 U/mg spesifik aktivite değeriley %0.5, en düşük ise 76.09 U/mg spesifik aktivite değeriley %0 CaCl₂ konsantrasyonlarında elde edilmiştir. Besiyerine %0.5 oranında CaCl₂ eklenmesi kontrol göre enzim üretiminin yaklaşık 2 kat artırdığı tespit edilmiştir. Çalışılan enzim ürettikleri için CaCl₂ gerekli değildir ama maksimum enzim üretimi için CaCl₂’ e ihtiyaç vardır. Enzim üretiminin %0.5 CaCl₂’de artması, bakterinin özellikle Ca²⁺ iyonunu kullanarak enzim sentezini artırdığı ve enzim aktif konformasyonunun Ca²⁺ iyonu tarafından stabilize edildiği şeklinde düşünülebilir.

Enzim üretiminde kalsiyumun biyolojik rolünü araştırmak için birçok çalışma yürütülmüştür.

Secades ve ark. (2001), Flavobacterium psychrophilum’ un proteaz üretim seviyesinin spesifik olarak CaCl₂ konsantrasyonuna bağlı olduğunu belirtmişlerdir.

Frikha ve ark. (2005), proteaz sentezinin artışı açıktayabilmek için 3 hipotez kurmuşlardır:

1. Hipotez: Ca⁺² enzim sekresyonu (salgılanması) için gerekli olabilir.
2. Hipotez: Kalsiyum tarafından enzim üretimi indüklenebilir.
3. Hipotez: Enzim sentezinden sonra iyonik kalsiyum (Ca⁺²) tarafından enzim aktif konformasyonunu stabilize edilebilir.

Suş, besi yerinde CaCl₂ eksikliğinde çoğaldığında hücrelerin içinde aktivitenin belirlenmediği için 1. Hipotez olası görünmüyor. Dahası, suslar MgCl₂ içeren besi yerinde ürettiği kültür süpernatantında ve hücrenin içinde aktivite belirlenmemiştir. Bakteriler CaCl₂ içeren besi ortamında kültüre alındığında süpernatantta %88’ den fazla aktivite belirlenmiştir.
Secades ve ark. (2001), bir balık patojeni olan Flavobacterium psychrophilum dan metaloproteazın indüklenmesinin sadece üreme ile olduğunu, statik fazda kalsiyumun eklennesi enzim üretiminin indüklemediğini belirtmişlerdir.

Frikhıa ve ark. (2005), mikroorganizmanın üremesinin erken aşamalarından üssel fazın katlanarak artan değerlerle sonunda ve statik fazda bile artarak devam eden aktivite belirlendiği için proteazın biyosentezinin üreme ile ilgili olduğunu belirtmişlerdir.

Başlangıçta besi yerine CaCl₂ nin eklenmesi ile karşılaştırıldığında üssel ve üreme (4. Saat) (log) fazında besi yerine CaCl₂ eklenliğinde proteaz üretimi %30 arttığını belitmişlerdir. Fakat statik fazda CaCl₂ nin eklenmesi enzim oluşumunda önemli bir azalmaya neden olduğunu ve besi yerinde CaCl₂ nin eksikliğinde aktivitenin olmadığı belirmişlerdir. Böylece proteaz üretiminin kalsiyum ile stimule edildiğine ilişkin hipotezin de hüküm sürenini belirtilmiştir. Bu sonuçlardan enzimin termodinamik ve termoaktyivitesini CaCl₂ nin varlığında oldukça arttıgı ve ihtiyaç duyulan enzim aktivitesinin moleküler konformasyonuna korunak için CaCl₂ nin gerekli olduğunu belitmişlerdir. Diğer yandan EDTA gibi metal şelatörleri ile muamele edilerek inhibe edilen enzim aktivitesi kalsiyum iyonlarının (2-50 mM) eklenmesi ile onarılmadığı enzimin tersiyer yapısının şelatlayıcı metal iyonları tarafından geri dönüştümsüz bir şekilde bozulduğunu destekler. Bu sonuçlar B. cereus proteazının üç boyutlu yapısında Ca²⁺ bağlayıcı 4 bölge olduğunu göstermektedir. Besiyerinde farklı CaCl₂ konsantrasyonlarından %0.2 CaCl₂ nin enzim üretimini önemli miktarda arttırdığını belitmişlerdir.

Rahman ve ark. (2003), B.stearothermophilus F1 de kalsiyum ve stronsiyum (Sr) iyonlarının proteaz üretimi yaklaşık 2 kat arttuğunu belirtmişlerdir. Kalsiyumun proteaz üretimi üzerindeki etkisinin araştırırken CaCl₂ nin enzim oluşumu için gerekli olmadığı ve fakat 4.5 mM CaCl₂ nin besiyerine eklennesi verimi arttırdığını belirtmişlerdir. Aynı zamanda 5.5, 6 ve 6.5 mM konsantrasyonlarında CaCl₂ nin enzim üretimini azalttığı da belirtilmiştir. Mabrouk ve ark. (1999), Bacillus licheniformis ATCC 21415 te bazı metal iyonlarını besi yerine ekleyerek proteaz üretimi üzerinde etkilerini araştırırken %0.07 CaCl₂ enzim aktivitesinde kontrole göre %26.6 artış gösterdiğini belirtmişlerdir.
Shafee ve ark. (2005), *Bacillus cereus* 146’ın inkübasyonun 24. saatinde maksimum enzim üretiminin Mn$^{2+}$ ve Ca$^{2+}$ iyonlarında tespit edildiğini ve test edilen ağır metallerden Cu$^{2+}$ ve Li$^{+1}$ iyonlarının inhibisyona neden olduğunu belirtmişlerdir. Besi yerine Ca$^{2+}$, Cu$^{2+}$ ve Mg$^{2+}$ iyonlarının eklenmesi sadece inkübasyonun 48. saatinde yüksek proteaz üretimine neden olduğunu belirtmişlerdir. Frikha ve ark. (2005) ise *Bacillus cereus* BG1’ de etkisi araştırılan inorganik tuzlardan sadece CaCl$_2$ enzim üretiminde (3.800 U/mL) güçlü bir artışa neden olduğunu ve MgSO$_4$ (28 U/mL)’ün ise çok düşük seviyede bir enzim üretimi sağladığı belirtmişlerdir. Aynı zamanda CaCl$_2$ ve MgSO$_4$’ün bakteri üremesini arttırdığını da belirtmişlerdir. ZnSO$_4$, CuSO$_4$ ve MnSO$_4$’ün üremeyi inhibe ettiği belirtmişlerdir. Zambare ve ark. (2010), *Pseudomonas aeruginosa* MCM B-327’in besi yerine %0.3 oranında FeSO$_4$, MnSO$_4$ ve ZnSO$_4$ eklendiğinde kontrolle karşılaştırıldığında enzim üretimini azalmaya neden olduklarını belirtmişlerdir. %0.3 kalsiyum iyonu ise proteaz üretimini ne arttırdığı ne de baskıldığını bunun da enzimin kalsiyumdan bağımsız olduğunu anlamına geldiğini belirtmişlerdir.

Çalışmamızda kısmi saflaştırılan enzimde bazı metaller, metal şelatörleri ve kimyasal maddeler ve deterjanların etkisi incelenmiştir. Çizelge 4.1.’de bazı metallerin enzim aktivitesine olan etkileri görülmektedir. CaCl$_2$, MgCl$_2$ ve MnCl$_2$ enzim aktivitesinde artıça yol açmıştır. 2 mM CaCl$_2$ enzim aktivitesini %142.5 ve 10 mM MgCl$_2$ ise enzim aktivitesinin %89.2 mM MnCl$_2$ ise aktivitenin %29 oranında artmasına sebep olmuştur. 10 mM CuCl$_2$, HgCl$_2$ ve ZnCl$_2$ ise enzim aktivitesini sırasıyla %100, %100’ den fazla ve %96 oranında inhibe ettiği tespit edildi. Bu durum çalıştığımız enzimin Ca$^{2+}$ ve Mg$^{2+}$ iyonlarına bağlı bir enzim olduğu şeklinde açıklanabilir.

Adinarayana ve ark. (2003), *B.subtilis* PE-11’in salgıladığı kısmen saflaştırılmış enzim aktivitesini 5 mM CaCl$_2$ ve MgCl$_2$ iyonlarının sırasıyla %35 ve %16 arttırdığını belirtmişlerdir. Ghorbel ve ark. (2003), 5mM CaCl$_2$, 5 mM Mg ve Mn iyonlarının *B.cereus* BG1’e ait proteaz aktivitesini sırasıyla %350, %185, %57 oranında arttırdı. Cu ve Zn iyonlarının da sırasıyla %65, %72 oranında inhibe ettiği belirtmişlerdir. Nascimento ve Martins (2004), termofilik *Bacillus sp.’e* ait ekstraselüler proteaz aktivitesinin HgCl$_2$, CuCl$_2$, ZnCl$_2$ ve KCl tarafından güçlü bir şekilde inhibe edildiğini belirtmişlerdir. HgCl$_2$’nin 1 mM konsantrasyonda bile enzimi tamamen inhibe ettiği belitmiştir. Nilegaonkar ve ark. (2007), *Bacillus cereus* MCM B-326’da proteaz
aktivitesinin Cu$^{+2}$, Zn$^{+2}$ ve Mg$^{+2}$ iyonları tarafından dikkat çekici bir şekilde (%80-93), Na$^+$, Fe$^+$ ve Mn$^{+2}$ iyonları tarafından ise kısmen (%30-60) inhibe ettiğini belirtmişlerdir. Devi ve ark. (2008), Aspergillus niger’ e ait alkanin proteaz enzim aktivitesinin 5 mM Cu$^{+2}$, Zn$^{+2}$ ve Hg$^{+2}$ iyonları tarafından inhibe edilirken, 5mM CaCl2’nin aktiviteyi artırdığını belirtmişlerdir. Hmidet ve ark. (2009), Bacillus licheniformis NH1’ e ait alkanin proteaz enzim aktivitesini 5 mM Ca$^{+2}$, Mg$^{+2}$ ve Cu$^{+2}$ iyonları sırasıyla %24, %14 ve %11 oranında arttırdıgını belirtmişlerdir. Zn$^{+2}$, Ba$^{+2}$ ve Cu$^{+2}$ iyonları ise aktiviteyi sırasıyla %3, %9 ve %35 oranında inhibe ettiğini belirtmişlerdir.

Çizelge 4.2.’ de bazı kimyasal maddelerin ve metal şelatörlerin enzim aktivitesine olan etkileri görülmektedir. Kontrol ile karşılaştırıldığında EDTA ve 1,10-phenantroline’ in 1 mM-10 mM arasında proteaz enzimini güçlü bir şekilde inhibe ettiği görülmektedir. PMSF’ nin etkisinde ise etanole bağlı bir inhibisyonun olduğu görülmektedir. Çalışılan enzimin PMSF ile inhibe olmaması serin proteaz olmadığına göstermektedir. Çalışılan proteaz enziminin EDTA ve 1,10-phenantroline ile inhibe olması metaloproteaz olduğunu göstermektedir.

Şekil 4.10.’ da deterjanların farklı konsantrasyonlarının enzim aktivitesi üzerine etkileri görülmektedir. Kontrolle karşılaştırıldığında sonucu enzim aktivitesini %1 SDS’ nin tamamen, %1 Alo’ nun %84 oranında, %0.5 Triton X-100’ ün %5 oranında ve %0.1 Tween-80’ in %2 oranında inhibe ettiği görülmektedir. Bu durum Triton X-100 ve Tween-80 gibi nötral deterjanların enzimimizi çok önemli oranda inhibe etmediği şeklinde açıklanabilir.

Dodia ve ark. (2008); Haloalkalifilik bacterium sp. AH-6’ y ait seri alkanin proteazın %0.05 SDS’ in varlığında enzim aktivitesi % 2 oranında azalırken, %0.2 SDS’ nin varlığında aktivite tamamen inhibe olmuştur. %0.05 TritonX-100’ ün varlığında enzim aktivitesi %23 artarken %0.2 TritonX-100’ ün varlığında aktivite tamamen inhibe
olmuştur. %0.1 Tween-80 varlığında enzim aktivitesi %35 artarken, %2 Tween-80 varlığında aktivite tamamen inhibe olmuştur. Wang ve ark. (2009) ise B. cereus’a TKU006’a ait proteaz enzim aktivitesini %2 Tween-20, Tween-40, Triton X-100 ve 1 mM SDS varlığında sırasıyla %61, %60, %73 ve %100 koruduğunu belirtmişlerdir.

Çalı́şı́mımızda kısmen saflaştırılmış enzimde zamana bağlı sıcaklık stabilitesinin belirlenebilmesi amacı ile 40ºC, 45ºC ve 50ºC sıcaklık değerlerinde sadece enzim kullanılarak 30 ile 120 dk. arasında ön inkübasyona bırakılmıştır. Daha sonra proteaz aktivite tayini yapılmıştır. Şekil 4.11.'de görüldüğü gibi sadece enzim kullanılan termostabilite analizinde 40ºC’de 120 dakika sonunda enzimin oldukça stabil olduğu ve enzim aktivitesinin %1 oranında arttığı tespit edilmiştir. 45ºC’de enzim 60 dk. sonunda %95 oranında aktivite gösterırken 120 dk. sonunda kalan enzim aktivitesinin %77 olduğu tespit edilmiştir. 50ºC’de ise ise 120 dk. sonunda kalan enzim aktivitesinin %31 olduğu tespit edilmiştir.

Çalı́şı́mımızda enzimin sıcaklık karşı dayanıklılığını artırmak için 2 mM CaCl₂ nin enzimden termal stabilitesine olan etkisi araştırılmıştır. Bunun için enzim 2 mM CaCl₂ ile birlikte 50ºC’de 30 ile 120 dk. arasında ön inkübasyona bırakılmıştır. Daha sonra proteaz aktivite tayini yapılmıştır. Şekil 4.12.’de 2 mM CaCl₂ nin enzimden termal stabilitesine olan etkisi görülmektedir. 50ºC’de 2 mM CaCl₂ ile birlikte enzimin 30 dk., 60 dk. ve 120 dk. sonunda sırasıyla kalan aktivitelerinin %125, %115 ve %102 olarak tespit edilmiştir. CaCl₂ enzimden termostabilitesini artırdığı tespit edilmiştir. Bu durum yüksek sıcaklık gerektiren biyoteknolojik uygulamalarda enzimin, biyoteknolojik olarak kullanılabilebilirliğin yüksek olduğunu göstermektedir. Ghorbel ve ark. (2003), B. cereus BG1’e ait proteaz enziminin optimum sıcaklığının Ca²⁺ iyonu yokluğunda 50ºC iken 2 mM Ca²⁺ iyonu varlığında 60ºC olduğunu ve enzimin Ca²⁺ iyonu yokluğunda 55ºC’de 15 dk. tutulduğunda tamamen inhibe olduğunu belirtmişlerdir. Adinarayana ve ark. (2003), B. subtilis PE-11’ e ait termostabil serin alkalin proteaz enzimininin 10 mM CaCl₂ varlığında 60ºC’de 350 dk. inkübasyondan sonra bile %100 stabil olduğunu belirtmişlerdir.

Çalı́şı́mımızda B. cereus KG5’e ait proteaz enzimi amonyum sülfat çözülmüşdiyalız ve sefades G-75 jel geçirenlik kromatografisi ile %23 verimle 13 kat saflaştırılmıştır (Çizelge 4.1.). Adinarayana ve ark. (2003), Bacillus subtilis PE-11’

Çalışmamızda *B. cereus* KG5 tarafından salgılanan proteaz enzimi amonyum sülfat çöktürmesi&diyaliz ve Sefadeks G-75 jel geçirgenlik kromatografisi ile saflaştırılmıştır. 2 basamakta saflaştırılan proteaz enziminin varlığını tefit etmek amacıyla %0.1 jelatin içeren non-denatüre poliakrilamid jel elektroforezi (Şekil 4.15.) ve enzimün yaklaştık olarak molekül ağırlığını belirlemek amacıyla sodyum dodesil sülfat poliakrilamid jel elektroforezi (SDS-PAGE) (Şekil 4.14.) yapılmıştır. SDS-PAGE’ nin yardımıyla proteazın molekül ağırlığının yaklaşık olarak 48 kDa civarında olduğu tespit edilmiştir.

5. SONUÇ VE ÖNERİLER

Biyoteknolojinin klasik tanımı kısaca "Biyokatalizatörlerin teknik boyutta kullanımı" dır. Konuya bu boyutta yaklaşıldığında bir yandan olağanüstü bir seçimlilikte etki gösteren biyokatalizatörlerin (enzimler ve hücreler) endüstriyel uygulamalara elverişli immobile formlarının geliştirilmesi, diğer yandan enstrümantasyon alanındaki teknolojik gelişmeler bugüne kadar kimyanın etkinlik alanna giren birçok prosesin yerini daha ekonomik olan biyoproseslere bırakması sonucunu doğurmuştur (Telefoncu ve Pazarlıoğlu 1995).

Bu çalışmada Bingöl Kös sıcak su kaynağından izole edilen *Bacillus cereus* KG5' in salgıladığı ekstrasellüler proteaz enziminin saflaştırılması ve karakterizasyonu gerçekleştirilmştir.

Enzimin optimum sıcaklığı ve pH değeri sırasıyla 40-45°C ve 7.0 olarak tespit edilmiştir.

Çalışmamızda farklı besi yerlerinin enzim üretimi üzerindeki etkisi incelendiğinde BM besi yerinde proteaz üretiminin maksimum değerde olduğu tespit edilmiştir.

%1.2 oranındaki azot kaynaklarının enzim üretimi üzerindeki etkisi incelendiğinde yeast ekstrakt ve ürenin enzim üretiminin kontrolde göre arttırdığı tespit edilmiştir.

Farklı yeast ekstrakt konsantrasyonlarının enzim üretimi üzerindeki etkisi incelendiğinde %0.5 yeast ekstraktin enzim üretiminin kontrolde göre yaklaşık 25 kat arttırdığı tespit edilmiştir.

%2 oranındaki karbon kaynakların enzim üretimi üzerindeki etkisi incelendiğinde kontrolde göre laktozun enzim üretiminin arttırdıkları glukozun ise üretimi önemli ölçüde azalttığı (represe ettiği) tespit edilmiştir.
%0.5 oranındaki farklı metal iyonlarının enzim üretimi üzerindeki etkisi incelendiğinde %0.5 CaCl₂’ in enzim üretimini kontrole göre yaklaşık 2 kat arttırdığını, NaCl ve MnCl₂’ nin üretimini represe ettiği tespit edilmiştir.

Farklı CaCl₂ konsantrasyonlarının enzim üretimi üzerindeki etkisi incelendiğinde besiyerine %0.5 oranında CaCl₂ eklenmesi kontrole göre enzim üretimini yaklaşık 2 kat artırduğu tespit edilmiştir. Kontrolle karşılaştırıldığında en yüksek enzim aktivitesinin %0.5, en düşük aktivitenin ise %0 CaCl₂ konsantrasyonlarında elde edilmiştir.

Amonyum sülfat çöktürmesi ve diyaliz yapılarak kısmi saflaştırılan enzimin aktivitesi üzerine bazı metaller, bazı metal şelatör ve kimyasal maddeler ve bazı deterjanların etkisi araştırılmıştır.

Enzim aktivitesi üzerine bazı metallerin etkisi incelendiğinde CaCl₂, MgCl₂ ve MnCl₂’ nin enzim aktivitesinde artışa yol açarken, CuCl₂, ZnCl₂ ve HgCl₂’ nin de enzim aktivitesini güçlü bir şekilde inhibe ettiği tespit edilmiştir. Bazı metal şelatör ve kimyasal maddelerin enzim aktivitesi üzerindeki etkisi incelendiğinde PMSF aktivite üzerinde önemli bir değişikliğe yol açmazken metal şelatörleri olan EDTA ve 1,10-Phenantrolin’ in enzim aktivitesini güçlü bir şekilde inhibe ettiği belirlenmiştir. Bu durum enzimin bir metaloproteaz olduğunun göstergesidir.

Bazı deterjanların enzim aktivitesi üzerindeki etkisi incelendiğinde Triton X-100 ve Tween 80 gibi nötral deterjanların enzim aktivitesinde önemli bir değişiklik gözlememişiz. %1 SDS konsantrasyonunda enzim aktivitesinin tamamen ve ticari bir deterjan olan ALO’ nun %0.5 ve %1 konsantrasyonunda aktivitenin inhibe olduğu tespit edilmiştir.

Kısım saflaştırılan enzimin termostabilitesinin belirlenmesi için enzim aktivitesi 40-50°C sıcaklıkları ve 30-120 dk. arasındaki sürelerde incelenmiştir. Enzimin aktivitesini 40°C 120 dk. sonunda %101 oranında koruduğu, 45°C’ de ise 120 dk. sonunda aktivitesini %77 oranında koruduğu, 50°C’ de ise 120 dk. sonunda aktivitesini %69 oranında kaybettiğini tespit edilmiştir.

2mM CaCl₂’ nin enzimin termostabilitesinin arttığı tespit edilmiştir.
Çalışmamızda *B. cereus* KG5’ e ait proteaz enzimi amonyum sülfat çöktürmesi&diyaliz ve Sefadeks G-75 jel geçirgenlik kromatografisi ile %23 verimle 13 kat saflaştırılmıştır. Çalışmamızda Sephadeks G-75 kolon kromatografisi ile saflaştırılan enzimin yaklaşık molekül ağırlığını belirlemek ve varlığını tespit etmek amacıyla sırasıyla SDS-PAGE ve %0.1 jelatin içeren non-denatüre poliakrilamid jel elektrofezi yapılmıştır.

SDS-PAGE analizi sonucu *B. cereus* KG5’ e ait proteaz enziminin molekül ağırlığının yaklaşık 48 kDa civarında olabileceği tespit edilmiştir.

Sıcak su kaynaklarından izole edilen *Bacillus cereus* KG5’ in sentezlediği ekstrasellüler proteaz enziminin tayin edilen optimum şartları (pH, sıcaklık, inhibisyon vs.) ve karakterizasyonu doğrultusunda endüstride kullanım potansiyelinin yüksek olduğu tespit edilmiştir.

Enzimin pH 7’ de aktif olması nötral bir proteaz olduğunu göstergesidir. Bu nedenle çalışan enzimin nötral hidrofobik aminoasit bağlarını hidrolizleme işleminde ve gıda protein hidrolizatlarının acısını azaltmada kullanılıp kullanılamayacağını araştırılması gerekmektedir.

Enzim üretiminin arttıran azot ve karbon kaynakları ve kalsiyumun tespitinin yanı sıra maksimum enzim üretiminin 24 saat gibi kısa zamanda olması hem zaman hem de ekonomik açıdan avantajlı bir durumdur. Ayrıca enzimin 2 mM CaCl₂ varlığında 50°C’ de aktif olması yüksek sıcaklık gerektiren endüstriyel uygulamalarda kullanılabileceği tespit edilmiştir.

Sıcak su kaynaklarından izole edilen *Bacillus cereus* KG5’ in sentezlediği ekstrasellüler proteaz enziminin tayin edilen optimum şartları (pH, sıcaklık, inhibisyon vs.) ve karakterizasyonu doğrultusunda endüstride kullanım potansiyelinin yüksek olduğu tespit edilmiştir.
6. KAYNAKLAR

6. KAYNAKLAR

KAYNAKLAR

Nazenin AHMETOĞLU

ÖZGEÇMİŞ

Adı Soyadı : Nazenin AHMETOĞLU

Doğum Yeri: DİYARBAKIR

Doğum Tarihi: 12.02.1986

Medeni Halı: Bekar

Yabancı Dili: İngilizce

Eğitim Durumu (Kurum ve Yıl)

Yüksek Lisans : Dicle Üniversitesi (2009-2011)